

Phase 2 Environmental Site Assessment, Parcel 3

Prepared for: Hydro Aluminium Kurri Kurri Pty Ltd

> Prepared by: ENVIRON Australia Pty Ltd

> > Date: April 2015

Project Number: AS130348

Prepared by:		Authorised by:		
Name:	Steven Cadman	Name:	Fiona Robinson	
Title:	Environmental Scientist	Title:	Senior Environmental Engineer	
Phone:	02 4962 5444	Phone:	02 4962 5444	
Email:	scadman@environcorp.com	Email:	frobinson@environcorp.com	
Signature:	Date:24/4/15	Signature:	Jogsburg Date:24/4/15	

This document is issued in confidence to Hydro Aluminium Kurri Kurri Australia Pty Ltd for the purposes of a Phase 2 Environmental Site Assessment. It should not be used for any other purpose. The scope of the Phase 2 Environmental Site Assessment was based on ENVIRON's proposal dated 25 July 2013.

The report must not be reproduced in whole or in part except with the prior consent of ENVIRON Australia Pty Ltd and subject to inclusion of an acknowledgement of the source. No responsibility is accepted for use of any part of this report in any other context or for any other purpose or by third parties. This report does not purport to give legal advice. Legal advice can only be given by qualified legal practitioners.

Whilst reasonable attempts have been made to ensure that the contents of this report are accurate and complete at the time of writing, ENVIRON Australia Pty Ltd disclaims any responsibility for loss or damage that may be occasioned directly or indirectly through the use of, or reliance on, the contents of this report.

Specific assumptions and limitations identified by ENVIRON as being relevant are set out in the report. The methodology adopted and sources of information used by ENVIRON are outlined in our scope of work. ENVIRON has made no independent verification of this information beyond the agreed scope of works.

This report should be read in full.

© ENVIRON Australia Pty Ltd

Document File Name	Date Issued	Version	Author	Reviewer	
AS130348 Parcel3_Phase 2_D1	14 March 2014	Draft 1	S Cadman	F Robinson	
AS130348 Parcel3_Phase 2_FINAL	4 June 2014	Final	S Cadman	F Robinson	
AS130348 Parcel3_Phase 2_FINAL rev 1	5 June 2014	Final	S Cadman	F Robinson	
AS130348 Parcel3_Phase 2_FINAL_V1	24 April 2015	Final	S Cadman	F Robinson	

VERSION CONTROL RECORD

Contents

		Page
1	Introduction	3
1.1	Background	3
1.2	Objectives and Scope of Work	3
2	Site Description	5
2.1	Site Location	5
2.2	Site Setting	6
2.2.1	Topography	6
2.2.2	Regional Geology	6
2.2.3	Site Hydrology	6
2.2.4	Regional Hydrogeology	6
2.3	Site Sensitivity	7
3	Site History	8
4	Sampling and Analytical Quality Plan	8
4.1	Potential Areas and Contaminants of Concern	8
4.2	Data Quality Objectives and Data Quality Indicators	8
4.3	Sampling Design	9
4.3.1	Fluoride	9
4.3.2	Asbestos	9
5	Basis for Assessment Criteria	11
5.1	Soil	11
6	Results	15
6.1	Site Walkover	15
6.2	Soil Investigations	15
6.3	Soil Results	16
6.4	Surface Water Investigations	16
6.5	Quality Assurance/ Quality Control	17
7	Site characterisation	17
7.1	Conceptual Site Model	17
8	Conclusions and Recommendations	18
9	References	19
10	Limitations	20
10.1	User Reliance	20

List of Figures

AS130348

Figure 1:	Site Location Plan
Figure 2:	Land Parcels and Proposed Land Zoning

Figure 3:	Former Glen Main Colliery
Figure 4:	Site Layout
Figure 5:	Sampling Locations – Former Rail Spur
Figure 6:	Fluoride Sampling Locations

List of Tables

Table 1:	Lot and Development Plans for Parcel 3.
Table 2:	Soil Assessment Criteria – Health and Ecological Investigation Levels
Table 3:	Soil Assessment Criteria for Vapour Intrusion - HSL A & HSL B – Sand
Table 4:	ESLs and Management Limits for Petroleum Hydrocarbons in Soil
Table 5:	Site Specific Soil Assessment Criteria for Fluoride
Table 6:	Health Screening Levels for Asbestos Contamination in Soil (w/w)
Table 7:	Summary of Soil Results

List of Appendices

Appendix A:Surrounding Groundwater BoresAppendix B:Site PhotographsAppendix C:Field Information SheetsAppendix D:Results TablesAppendix E:Laboratory ReportsAppendix F:QA/QC Assessment

Acronym and Abbreviations

ACM	Asbestos Containing Materials
AHD	Australian Height Datum
ALS	Australian Laboratory Services
BGL	Below Ground Level
CT	Certificate of Title
DEC	NSW Department of Environment and Conservation, now EPA
DP	Deposited Plan
DQI	Data Quality Indicator
DQO	Data Quality Objective
EIL	Ecological Investigation Level
EPA	NSW Environment Protection Authority
ESA	Environmental Site Assessment
F	Fluoride
GMU	Groundwater Management Unit
GPS	Global Positioning System
Ha	Hectare
HIL	Health Investigation Level
HSL	Health Screening Level
HRA	Health Risk Assessment
km LOR	Kilometres Limit of Reporting Metres
m mg/kg mg/L	Milligrams per Kilogram Milligrams per Litre
m AHD	Metres relative to the Australian Height Datum
m BGL	Metres below ground level
mg/L	Micrograms per Litre
NĂTA	National Association of Testing Authorities
ND	Not Detected
NEHF	National Environmental Health Forum
NEPC	National Environment Protection Council
NEPM	National Environment Protection Measure
NHMRC	National Health and Medical Research Council
NSW	New South Wales
n	Number of Samples
OH&S	Occupational Health & Safety
PQL	Practical Quantitation Limit
QA/QC	Quality Assurance/Quality Control
RPD	Relative Percent Difference
UCL	Upper Confidence Limit
µg/L	Micrograms per Litre
VENM	virgin excavated natural material
-	On tables is "not calculated", "no criteria" or "not applicable"

Executive Summary

This report presents the findings of a Phase 2 Environmental Site Assessment undertaken on part of the Hydro Aluminium Kurri (Hydro) owned land known as Parcel 3. Parcel 3 is a rural property and is accessed from Cessnock Road, Kurri Kurri and located immediately east of the buffer zone for the Hydro aluminium smelter.

The objectives of the assessment were to assess the presence of contamination at Parcel 3 and to assess the suitability of that site for both current land uses and future uses for the purposes of low rural residential (R2), environmental conservation (E2) and public recreation (RE1) land use.

Parcel 3 is approximately 139Ha, comprising a number of lots within DP71130, DP998540 and DP62332. Parcel 3 predominantly comprises cleared land, mainly covered in grasses and small trees and shrubs and is used for cattle grazing, with a densely vegetated area in the south-east. Historical coal mining was undertaken on neighbouring land to the north and east. Coal was transported from the mine to Maitland by a short branch line connected to the South Maitland Railway line. The line was removed by the mid-1940s and ran through what is now an easement between Lot 2 and Lot 3 of DP62332 of Parcel 3.

To assess the potential for soil contamination in Parcel 3, soil samples were collected from within the remnant rail spur fill embankment and across the site in general. No other signs of disturbed land or of land filling were observed during the assessment.

Soil samples from the former rail spur were analysed for petroleum hydrocarbons (TPH), soluble fluoride, asbestos and polycyclic aromatic hydrocarbons (PAH). Surface soil samples from across Parcel 3 were analysed for soluble fluoride.

Samples collected from along the former railway embankment remnant in the northern area of Parcel 3 contained concentrations slightly in excess of the adopted site guideline for TPH >C10-C16 (3 samples) and the TPH >C16-C34 ecological screening level guidelines for urban residential land use (1 sample). The 95% Upper Confidence Limit (UCL) concentrations were below both guidelines. Concentrations of all other analytes tested were found to be below the adopted site guidelines. Although no surface water (from farm dams) was sampled during the investigation, it is considered that site conditions have minimal potential to impact surface waters.

Parcel 3 is suitable for the current land use and for the purposes of low rural residential (R2), environmental conservation (E2) and public recreation (RE1) land use.

Hydro has separately engaged a NSW EPA-accredited Site Auditor to issue a Site Audit Statement certifying that the site is suitable for the proposed use.

1 Introduction

1.1 Background

This report presents the findings of a Phase 2 Environmental Site Assessment undertaken on part of the Hydro Aluminium Kurri Kurri Pty Limited (Hydro) owned land designated as Parcel 3.

The work has been performed at the request of Hydro Aluminium Kurri Kurri Pty Limited (the "Client").

Hydro is currently evaluating options for the divestment of land parcels for a range of future land uses following the closure of the smelter in May 2014. A Rezoning Masterplan has been developed that identifies Parcel 3 to comprise land suitable for low rural residential (R2), environmental conservation (E2) and public recreation (RE1) land use.

A Phase 1 Environmental Site Assessment has previously been prepared for all Hydro owned lands and evaluated the potential for contamination. On Parcel 3, these investigations identified the presence of a former rail spur extending south from the South Maitland railway for approximately 350m along an easement between Lot 2 and Lot 3, DP 62332. The investigations also identified records of historical coal mining activities to the east and north of Parcel 3.

It is noted that at the time of the fieldwork, this land parcel was named Residential Parcel 3 and as such the soil samples reference this name. The parcel was renamed Parcel 3 during the Rezoning Masterplan process.

The location of Parcel 3 in the context of the Rezoning Masterplan is shown in Figure 2.

1.2 Objectives and Scope of Work

The objectives of the assessment were to assess the presence of contamination at Parcel 3 and to assess the suitability of that site for both current land uses and future uses for the purposes of low rural residential (R2), environmental conservation (E2) and public recreation (RE1) land use.

The scope of work performed to meet the objectives comprised:

- A review of available information relating to land use to assess the potential for soil, groundwater or surface water contamination arising from historic and current activities;
- A review of published geological, hydrogeological and hydrological data to establish the environmental setting and sensitivity;
- Field work comprising:
 - Collection of surface soil samples to provide a coarse grid assessment to assess the potential for dust deposition from the smelter operations;
 - Collection of surface soil samples to assess the rail embankment area of the former rail spur;
 - A site walkover to evaluate other potential locations of buried waste or illegal dumping, or other site activities that may give rise to contamination.

- Data interpretation including comparison against relevant guidelines and a discussion of the findings in terms of human health and environment risk under the current and future land use scenarios.
- Review of options available for remediation or management to render Parcel 3 suitable for the proposed land use.

2 Site Description

2.1 Site Location

Parcel 3 is owned by Hydro Aluminium Kurri Kurri Pty Limited and is located approximately 35km north west of the city of Newcastle and 150km north of Sydney, in New South Wales, Australia. The address of Parcel 3 is Cessnock Road, Cliftleigh, New South Wales, Australia. The location of Parcel 3 is shown in **Figure 1**.

Parcel 3 is located immediately east of the Buffer Zone of the Hydro Aluminium Kurri Kurri Smelter, approximately 2.5km to the north-east of the smelter. The northern and south-western areas of Parcel 3 are predominantly covered in grasses and other scattered small trees and shrubs and are used for cattle grazing. The south-eastern area is covered with dense bush/vegetation and is fenced off from the rest of the parcel. The Buffer Zone is an area of land surrounding the smelter that provides a buffer between the smelter and surrounding communities.

Shallow sloped natural drainage lines traverse the mid and southern areas of the parcel and are typically more heavily vegetated by trees and shrubs.

The majority of Parcel 3 is located within the Cessnock Local Government Area and is zoned RU2 – Rural Landscape under the Cessnock Local Environment Plan. A small portion is located within the Maitland Local Government Area and is zoned RU1 – Rural Production under the Maitland Local Environment Plan.

The South Maitland Railway line extends north to south and forms the western and northwestern boundary of Parcel 3. The line is privately owned and extends from Pelton, south of Cessnock to Maitland. Train movements along the line are infrequent (approximately twice a day).

Parcel 3 is approximately 139 hectares (ha) and comprises the Lot numbers and Deposited Plans listed in Table 1:

Table 1: Lot and Deposited Plans for Parcel 3.				
Subarea	Lot/ DP	Area (ha)	Total Area (ha)	
Parcel 3	Lot 1 DP71130 Lot 1 DP998540 Lot 2 DP62332 Lot 3 DP62332 Lot 1 DP 73597 Part 2	8.7 116.9 7.6 6 0.6	139.8	

Land uses surrounding Parcel 3 are as follows:

- North: A dedicated coal railway line then farmland;
- South: Bushland and residential land;
- East: Farmland;

AS130348

• West: A dedicated coal railway line then farmland.

Parcel 3 is located approximately 1.3km to the north east of the smelter site boundary.

2.2 Site Setting

2.2.1 Topography

Parcel 3 is located on slightly undulating ground from approximately 20 mAHD in the north and north-east to eastern section, to flats in the south and west below 10mAHD.

The land generally slopes from the north and east towards the lower flat areas in the south and west.

Wentworth Swamp is located approximately 1km north-west of Parcel 3 at an elevation of approximately 10 mAHD.

2.2.2 Regional Geology

According to the review of the regional geology described on the Hunter Coal Field Geological Sheet, most of Parcel 3 is underlain by the Lower Permian-aged Rutherford Formation comprising, sandstone and siltstone.

The south western low areas are underlain by Quaternary-aged undifferentiated alluvium (clays, sands and silts), associated with the modern surface water bodies.

Quaternary sediments which are associated with Wentworth Swamp (approximately 1km west of Parcel 3) and the Hunter River consist of gravel, sand, silt and clay.

2.2.3 Site Hydrology

Surface water from Parcel 3 generally discharges via man-made and natural drainage lines to the west site boundaries.

Surface water in the western portion of Parcel 3 is also directed via drainage lines towards the farm dams in the south western portion of Parcel 3 and into Wentworth Swamp. Wentworth Swamp in turn discharges to the Hunter River approximately 5km northeast of Parcel 3 near Maitland.

The Wentworth Swamp system is within the Fishery Creek Catchment, where declining stream water quality and a reduction in diversity of native plants and animals has occurred due to population growth and development pressures in the last ten years (Hunter-Central Rivers Catchment Management Authority).

2.2.4 Regional Hydrogeology

Regional groundwater is expected to follow topography and flow northeast towards the surface water bodies that discharge to the Hunter River. Locally, groundwater beneath Parcel 3 is expected to flow north west to Wentworth Swamp located on the western site boundary.

According to the NSW Office of Environment and Heritage (Natural Resource Atlas), there are 31 licensed groundwater abstractions (bores) located approximately 7.5km north east of Parcel 3 at Maitland and South Maitland.

The groundwater bores are located within the coal measures or Quaternary Alluvium associated with Wentworth Swamp and other associated surface water bodies in the vicinity of Parcel 3.

Information for seven bores located in a 5km radius from Parcel 3 has been included in Appendix A. The bores are used for domestic, recreation, monitoring, irrigation and stock watering purposes. Information for a bore approximately 3km north east of Parcel 3 (GW066948) indicates a standing water level (SWL) for groundwater at 7.5m and a water bearing zone from 7.5m-14m. A bore approximately 3km north west of Parcel 3 (GW029088) indicates a SWL of 3m and a water bearing zone of 6m - 24m. The drillers log at this bore indicates the lithology as clayey sand (0m-6m) underlain by shale (6m-24m) and then sandstone (24m - 39m).

It is considered that impacts on groundwater by surface water are unlikely given the depth to groundwater (in excess of 5m below surface).

The Hunter River Alluvium Groundwater Management Unit (GMU) is an important groundwater resource to the region. Groundwater extraction for irrigation, urban supply, drought supply, stock, domestic and commercial/ industrial use occurs, with volumes in excess of 10,000ML per annum extracted from the Hunter River Alluvium GMU. Aquifer storage and recovery is also an important use of this GMU. It is noted that the Hunter River GMU is not the primary drinking water supply in the region, although the protection of drinking water is a water quality objective for the Hunter River (NSW Water Quality and River Flow Objectives), (www.environment.nsw.gov.au/ieo/Hunter/index.htm).

2.3 Site Sensitivity

The sensitivity of Parcel 3 with respect to surface water and groundwater is considered to be moderate based on the following:

- surface water and groundwater discharge into Wentworth Swamp, approximately 1km north- west of Parcel 3, which discharges to the Hunter River within the Fishery Creek Catchment, approximately 5km northeast of Parcel 3 near Maitland;
- declining stream water quality and a reduction in diversity of native plants and animals has occurred within the Fishery Creek Catchment and water quality down gradient of Parcel 3 has been impacted by historical coal mining;
- depth to groundwater greater than 5m; and
- the Hunter River GMU is used for irrigation, urban supply, drought supply, stock, domestic and commercial/ industrial use but it is not the main drinking water supply in the region.

3 Site History

Site history investigations included in the Phase 1 ESA for the Hydro Aluminium Kurri Kurri Smelter, dated 26 August 2013 indicate that Parcel 3 has (and continues to be) used for livestock grazing land.

Coal mining was identified on neighbouring land to the north and east and was known as the Glen Main colliery. The Glen Main colliery is one of a series of collieries that mined the Greta and Holmesville Coal Measures, coal seams that extend in a north-south direction between Cessnock Road and the South Maitland Railway line. The Glen Main Colliery is located on a portion of Hydro owned land that extends from South Maitland Railway line to Cessnock Road. The location of the Glen Main Colliery is shown in **Figure 3**. This area is immediately to the east of Parcel 3.

Mine rail tracks and the short branch line to the South Maitland Railway line were removed by the mid-1940s. The short branch line ran through what is now an easement between Lot 2 and Lot 3 of DP62332 of Parcel 3 (**Figures 3 and 4**).

The remoteness of Parcel 3 and surrounding bushland may also give rise to illegal dumping though it is noted that the buffer zone area is fenced and regularly monitored by Hydro personnel.

4 Sampling and Analytical Quality Plan

4.1 Potential Areas and Contaminants of Concern

Based on Parcel 6 historical information as discussed in **Section 3**, the following areas of concern were identified as follows.

- The former branch line from the South Maitland Railway which includes the presence of a fill embankment and potential contamination related to movement of trains across this area.
- Smelter dust deposition.
- Illegal dumping.

Contaminants of concern associated with the range of previous site activities are:

- asbestos;
- polycyclic aromatic hydrocarbons (PAHs);
- petroleum hydrocarbons; and
- fluoride.

AS130348

4.2 Data Quality Objectives and Data Quality Indicators

Data quality objectives (DQOs) and Data Quality Indicators (DQIs) were developed by ENVIRON using the US EPA seven-step DQO process. Completing the seven-step process

helps to define the purpose of the assessment and the type, quality and quantity of data needed to inform decisions relating to the assessment of site contamination.

The seven-step DQO process and DQIs are included in Appendix F.

4.3 Sampling Design

The sampling design was optimised following the development of DQOs and DQIs. The sampling design is outlined below. ENVIRON notes that the historical site activities indicate potential contamination to surface soils only. No potential contamination sources to subsurface soils, surface water or groundwater have been identified.

4.3.1 Fluoride

To assess the potential for fluoride in soil from dust deposition from the Hydro Aluminium Kurri Kurri Smelter, surface soil samples were collected at a rate of one sample per 5Ha.

The sample density is lower than that suggested in Table A of NSW EPA (1995) Contaminated Sites: Sampling Design Guidelines. The density is considered adequate for the purposes of this investigation for the following reasons:

- aerial dust deposition is likely to be relatively consistent over the surface of the parcel and therefore sampling on a low density will allow for identification of whether or not dust deposition is an issue; and
- in the event that elevated or variable fluoride concentrations are identified, additional sampling will be completed.

Samples were collected by trowel from surface soils on an approximate grid across open areas of Parcel 3. Sample locations were logged by GPS.

Soil samples were placed into laboratory-supplied paper bags and stored in an ice-filled cooler for transportation to the laboratory. Soil samples were transported to the laboratory under chain of custody conditions. Intra-laboratory duplicate soil samples were collected at a rate of 10%.

Soil samples were analysed for soluble fluoride, as this is the portion of total fluoride that is available for uptake in receptors including biota, flora, fauna and humans. The laboratory was NATA accredited for the analysis.

4.3.2 Asbestos

To assess the potential for asbestos and other illegally dumped wastes to be present at Parcel 3, a site walkover of accessible areas was completed.

The location and type of dumped wastes were detailed on Field Information Sheets and logged by GPS. Where asbestos was confidently identified by the field personnel, no sampling was completed. If not, a sample of potential asbestos containing material (ACM) was collected for laboratory analysis. ACM fragments were collected into a zip-lock bag using dedicated disposable gloves.

ACM fragments were analysed for asbestos identification by a laboratory NATA accredited for the analysis.

5 Basis for Assessment Criteria

5.1 Soil

The criteria proposed for the assessment of soil contamination were sourced from the following references:

• National Environment Protection Council (2013) National Environmental Protection (Assessment of Site Contamination) Amendment Measure 2013 (No. 1) (NEPM).

The variation to the National Environmental Protection (Assessment of Site Contamination) Measure (NEPM 2013) was approved on 19 June 2013 by the NSWEPA under the *Contaminated Land Management Act 1997*. NEPM (2013) provide revised health-based soil investigation levels (HILs) and ecological-based investigation levels (EILs) for various land uses, as follows:

- HIL A residential with garden/accessible soil (home grown produce <10% fruit and vegetable intake, (no poultry), also includes children day care centres, preschools and primary schools
- HIL B residential with minimal opportunities for soil access includes dwellings with fully and permanently paved yard space such as high-rise buildings and flats
- HIL C public open space such as parks, playgrounds, playing fields (e.g. ovals), secondary schools and footpaths. It does not include undeveloped public open space (such as urban bushland and reserves) which should be subject to a site-specific assessment where appropriate
- HIL D commercial/industrial such as shops, offices, factories and industrial sites.

The NEPM 2013 also introduces health-based and ecological screening levels and management limits for petroleum hydrocarbons (HSLs and ESLs). The levels have been derived from recent assessments that more accurately define the exposure mechanisms and risks from sites contaminated with petroleum hydrocarbons.

The objective of the Phase 2 ESA is to assess soil and surface water contamination at Parcel 3 in relation to risks posed to human health and the environment under the proposed future land use of low rural residential. As such, soil investigation results will be compared against the HIL/HSL A (residential) management limits and the EILs/ESLs (urban residential/public open space).

The HILs are applicable for assessing human health risk via all relevant pathways of exposure. The HILs are generic to all soil types and apply generally to a depth of 3 m below the surface for residential use.

 HSLs for soil vapour intrusion from petroleum hydrocarbons - guidelines that prevent accumulation of vapours at concentrations that may represent a health risk. The HSLs are derived for various depths and are for the same generic land uses as for the HILs. The guidelines are relevant where soils are beneath building or structures such as confined spaces;

- EILs for urban residential/ public open space, applicable for assessing risk to terrestrial ecosystems. EILs depend on specific soil physicochemical properties and generally apply to the top 2 m of soil.
- ESLs for urban residential/ public open space, developed for selected petroleum hydrocarbon compounds and fractions and are applicable for assessing risk to terrestrial ecosystems. These are also generally applicable to the top 2m of soil.
- Management Limits where concentrations above these limits may indicate poor aesthetics, high odour and potentially explosive vapour. Management limits are to be applied after consideration of relevant ESLs and HSLs.

The applicable assessment criteria for heavy metals and PAHs in soil are presented in Table 2:

Table 2: Soil Assessment Criteria (mg/kg)	Soil Assessment Criteria (mg/kg) – Health and Ecological Investigation Levels		
	HIL A	EIL	
Fluoride	Ref Table 5	Ref Table 5	
Carcinogenic PAHs (as BaP TEQ)	3	-	
Total PAHs	300	-	

Table 3: Soil Assessment Criteria for Vapour Intrusion - HSL A & HSL B (mg/kg) - Sand				
	0 to <1m	1m to <2m	2m to <4m	4m+
Toluene	160	220	310	540
Ethylbenzene	55	NL	NL	NL
Xylenes	40	60	95	170
Naphthalene	3	NL	NL	NL
Benzene	0.5	0.5	0.5	0.5
F1 ⁽⁴⁾	45	70	110	200
F2 ⁽⁵⁾	110	240	440	NL

The applicable assessment criteria for petroleum hydrocarbons in soil are presented in Table 3 and Table 4:

1 Land use settings are equivalent to those described in Section 5.1 (above). HSLs for vapour intrusion for high density residential assume residential occupation of the ground floor. If communal car parks or commercial properties occupy the ground floor, HSL D should be used.

2 The soil saturation concentration (Csat) is defined as the soil concentration at which the porewater phase cannot dissolve any more of an individual chemical. The soil vapour that is in equilibrium with the porewater will be at its maximum. If the derived soil HSL exceeds Csat, a soil vapour source concentration for a petroleum mixture could not exceed a level that would result in the maximum allowable vapour risk for the given scenario. For these scenarios, no HSL is presented for these chemicals and the HSL is shown as 'not limiting' or 'NL'.

3 (For soil texture classification undertaken in accord with AS 1726, the classifications of sand, silt and clay may be applied as coarse, fine with liquid limit <50% and fine with liquid limit>50% respectively, as the underlying properties to develop the HSLs may reasonably be selected to be similar. Where there is uncertainty, either a conservative approach may be adopted or laboratory analysis should be carried out.

4 To obtain F1 subtract the sum of BTEX concentrations from the C6-C10 fraction.

5 To obtain F2 subtract naphthalene from the >C10-C16 fraction.

TPH fraction	Soil texture	ESLs (mg/kg dry soil)	Management Limits ¹ (mg/kg dry soil)
		Urban residential and public open space	Residential, parkland and public open space
F1 C6- C10	Fine	180*	800
F2 >C10-C16	Fine	120*	1000
F3 >C16-C34	Fine	1300	3500
F4 >C34-C40	Fine	5600	10000
Benzene	Fine	65	-
Toluene	Fine	105	-
Ethylbenzene	Fine	125	-
Xylenes	Fine	45	-
Benzo(a)pyrene	Fine	0.7	-

Table 4: ESLs and Management Limits for Petroleum Hy	ydrocarbons in Soil

¹ Management limits are applied after consideration of relevant ESLs and HSLs.

 2 Separate management limits for BTEX and naphthalene are not available hence these should not be subtracted from the relevant fractions to obtain F1 and F2.

³ ESLs are of low reliability except where indicated by * which indicates that the ESL is of moderate reliability.

⁴ To obtain F1, subtract the sum of BTEX from C6-C10 fraction and subtract naphthalene from >C10-C16 to obtain F2.

NEPM (2013) do not provide criteria for fluoride in soils in Australia. Therefore, ENVIRON (2013) conducted a preliminary level Human Health Risk Assessment (HRA) specific to fluoride in order to derive a specific preliminary screening level for fluoride for the Hydro Aluminium Kurri Smelter. The screening levels are protective of the range of human receptors and are provided in Table 5:

Table 5: Site Specific Soil Assessment Criteria (mg/kg) for Fluoride		
Preliminary screening levels		
Land Use	Preliminary screening level	
Residential - soil	F 440mg/kg	
Recreational - soil	F 1,200mg/kg	
Commercial/ Industrial - soil	F 17,000mg/kg	

Soil investigation results for the samples taken from a grid formation across Parcel 3 have been compared against the residential land use screening level. The fluoride 'residential land use' screening level is considered to be suitably protective of both 'residential' and 'low rural residential' land use because the exposure pathways (including vegetable ingestion) and behavioural assumptions (e.g. soil ingestion rate) for the child are considered to be identical under residential and low rural residential land use scenarios. There is a possibility that the rural residential plots may contain a low density of domestic livestock such as poultry and goats, however there is limited evidence of fluoride accumulation in milk and edible tissues of animals fed high levels of fluorides (ATSDR, 2003; NAS, 1971). Rather, fluoride accumulates primarily (up to approximately 99%) in the skeletal tissues of terrestrial animals that consume fluoride-containing foliage (WHO, 1997; ATSDR, 2003). This assumption is supported by site-specific data collected during the 29th annual cattle survey conducted in March 2012 on cattle located within the site's buffer zone, and surrounding areas (AECOM, 2013). The results of this survey concluded that cattle has had little or no exposure to excess environmental fluoride; skeletal fluoride levels decreased compared to 2012 levels, with all fluoride measurements below the toxic threshold; and all cattle examined were in good health and body condition. Consequently, the residential site-specific fluoride criteria is considered to be suitably protective of rural residential land use that may contain a low density of domestic livestock.

The HSLs for asbestos are applicable for assessing human health risk via the exposure pathway of inhalation of airborne asbestos and are presented in Table 6. The HSLs are generic to all soil types.

Table 6. Health screening levels for asbestos contamination in soil Health Screening Level (w/w)				
Form of asbestos	Residential A ¹	Residential B ²	Recreational C ³	Commercial/ Industrial D ⁴
Bonded ACM	0.01%	0.04%	0.02%	0.05%
FA and AF ¹ (friable asbestos)	0.001%	0.001%		
All forms of asbestos	No visible asb	No visible asbestos for surface soil		

1. The screening level of 0.001% w/w asbestos in soil for FA and AF (i.e. non-bonded/friable asbestos) only applies where the FA and AF are able to be quantified by gravimetric procedures. This screening level is not applicable to free fibres.

Consistent with the guidance provided in the NEPM, the data was assessed against the above adopted site guidelines by:

- Comparing individual concentrations against the relevant guidelines and if discrete samples are in excess of the relevant guideline then;
- Comparing the 95% upper confidence limit (UCL) of mean against the relevant guideline also ensuring that:
 - the standard deviation of the results is less than 50% of the relevant investigation or screening level, and
 - no single value exceed 250% of the relevant investigation or screening level.

6 Results

6.1 Site Walkover

A site walkover was completed to assess Parcel 3 for areas of imported fill and whether further field investigations will be required.

The entrance to Parcel 3 is from Cessnock Road and through the north-eastern area of the Wangara rural holding. Parcel 3 comprises the southern four lots of this rural holding (see Section 2.1).

The northern and western portion of Parcel 3 was comprised of cleared, grass-covered land which generally gently sloped towards the west and south.

The South Maitland Railway line extends north and south of Parcel 3 and represents the western boundary.

Natural and man-made vegetated drainage lines were observed to extend across the site, generally following the topography. Several small farm dams were located over the four lots generally towards the western side. From observation, dams were typically formed from native materials (no imported fill). At several locations culverts beneath the rail embankment allowed drainage to flow west towards Swamp Creek and the Wentworth Swamp lands.

Evidence of the former rail spur, south from the South Maitland Line, was still visible on the north-south border between Lots 2 and 3, DP 62332. Approximately 350m in length, the former line was still visible as a linear, slightly raised mound following the line of the former rail embankment. In some locations, remnants of wooden sleepers and iron rail spikes were still evident. The remnant embankment fill comprised silty, sandy, gravelly fill, often with coal fragments. The former rail line was also delineated by a line of mature trees on its western side.

No other signs of disturbed land or of land filling were observed during the walkover.

Photographs are included in **Appendix B** and field information sheets are included in **Appendix C**.

6.2 Soil Investigations

Ten near-surface soil samples were collected, using a trowel, from embankment fill along the line of the former rail spur, (samples S1 to S10). Generally the soils of the remnant rail embankment of the former mining rail spur comprised silty, sandy gravelly soils, containing some coal fragments. These soil samples were analysed for fluoride, TRH/BTEX, asbestos and PAHs. The extent of the embankment is shown in **Figure 4**. The sample locations are presented in **Figure 5**.

Twenty eight additional surface soil samples were collected from the other lots across Parcel 3 as per the sampling design to assess the potential for fluoride in soil from dust deposition from the Hydro Aluminium Kurri Kurri Smelter, as shown in **Figure 6**.

6.3 Soil Results

Soil analytical results are presented in **Tables A and B** in **Appendix E**. Laboratory reports are included in **Appendix F**. A summary of the soil results is presented in **Table 7**.

Table 7: Summary of Soil Results				
Analyte	No. of Samples	Maximum Concentration (mg/kg)	No. exceeding Site Criteria	Criteria Exceeded (mg/kg)
Fluoride	28	4	0	-
BaP	10	<0.5	0	-
BaP TEQ	10	<0.5	0	-
Total PAHs	10	2.7	0	-
TRH C6-C10	10	160	0	-
TRH >C10- C16	10	<50	3	HSL "A" (110)
TRH >C16- C34	10	1390	1	1300 (ESL)
TRH >C34- C40	10	660	0	-

Three embankment samples exceeded the HSL for TRH C10-C16 ("F2"), however the 95% Upper Confidence Limit (UCL) for 10 samples was 101 mg/kg, below the criteria.

One sample exceeded the ESL for TRH >C16-C34. The 95% UCL for the 10 samples was 839mg/kg, below the guideline. These concentrations were therefore not considered to represent a risk to human or ecological health.

The remaining results for TRH, BTEX and PAHs in the former rail embankment samples were all below Parcel 3 criteria.

Results for fluoride in surface soil samples collected from a grid across Parcel 3 were all below the specified criteria.

No asbestos was noted in the soil and no asbestos fragments were identified in the analysis.

6.4 Surface Water Investigations

No specific water sampling was undertaken for this assessment. However, Hydro routinely monitor surface water quality (conductivity, pH and fluoride) at several points along Swamp Creek (which is located to the west), and, into which, surface water from Parcel 3 flows.

The nearest relevant surface water location is Location "E", immediately upstream from Wentworth Swamp. Location E is located downstream from any potential impacts from Parcel 3.

Also, as part of the investigations conducted for Parcel 1 (to the north of Parcel 3), samples of surface water, including samples from Wentworth Swamp were collected and analysed.

6.5 Quality Assurance/ Quality Control

A quality assurance assessment for this report is presented in **Appendix F**. An assessment was made of data completeness, comparability, representativeness, precision and accuracy based on field and laboratory considerations, as outlined in NSW DEC (2006) and NSW EPA (2007) guidelines. Overall it is considered that the completed investigation works and the data are of suitable quality to meet the project objectives.

7 Site characterisation

7.1 Conceptual Site Model

Parcel 3 consists of cleared pasture land for cattle grazing and comprises farm dams, some vegetated drainage lines (riparian zones) and areas of bushland in the south-eastern areas.

Parcel 3 is bounded by the South Maitland Railway line on the western boundary, and other rural and rural/residential properties off Cessnock Road and rural land on the north and southern boundary, and forms part of the eastern Buffer Zone for the Hydro Aluminium Kurri Kurri Smelter.

The former railway embankment remnant in the northern area (easement between Lots 2 and 3, DP 62332), had sample concentrations slightly in excess of the criteria for TPH >C10-C16 HSL "A" criteria (3 samples) and for TPH >C16-C34 ESL urban residential criteria (1 sample). The 95% UCL concentrations for both TPH >C10-C16 and TPH >C16-C34 were below the respective criteria.

Parcel 3 is suitable for the current land use and for the purposes of low rural residential (R2), environmental conservation (E2) and public recreation (RE1) land use.

Although no surface water (from farm dams) was sampled during the investigation, it is considered that site conditions have minimal potential to impact surface waters.

8 Conclusions and Recommendations

This report presents the findings of a Phase 2 Environmental Site Assessment undertaken on part of the Hydro Aluminium Kurri (Hydro) owned land known as Parcel 3. Parcel 3 is a rural property and is accessed from Cessnock Road, Kurri Kurri and located immediately east of the buffer zone for the Hydro aluminium smelter.

The objectives of the assessment were to assess the presence of contamination at Parcel 3 and to assess the suitability of that site for both current land uses and future uses for the purposes of low rural residential (R2), environmental conservation (E2) and public recreation (RE1) land use.

Parcel 3 is approximately 139Ha, comprising a number of lots within DP71130, DP998540 and DP62332. Parcel 3 predominantly comprises cleared land, mainly covered in grasses and small trees and shrubs and is used for cattle grazing, with a densely vegetated area in the south-east. Historical coal mining was undertaken on neighbouring land to the north and east. Coal was transported from the mine to Maitland by a short branch line connected to the South Maitland Railway line. The line was removed by the mid-1940s and ran through what is now an easement between Lot 2 and Lot 3 of DP62332 of Parcel 3.

To assess the potential for soil contamination in Parcel 3, soil samples were collected from within the remnant rail spur fill embankment and across the site in general. No other signs of disturbed land or of land filling were observed during the assessment.

Soil samples from the former rail spur were analysed for petroleum hydrocarbons (TPH), soluble fluoride, asbestos and polycyclic aromatic hydrocarbons (PAH). Surface soil samples from across Parcel 3 were analysed for soluble fluoride.

Samples collected from along the former railway embankment remnant in the northern area of Parcel 3 contained concentrations slightly in excess of the adopted site guideline for TPH >C10-C16 (3 samples) and the TPH >C16-C34 ecological screening level guidelines for urban residential land use (1 sample). The 95% Upper Confidence Limit (UCL) concentrations were below both guidelines. Concentrations of all other analytes tested were found to be below the adopted site guidelines. Although no surface water (from farm dams) was sampled during the investigation, it is considered that site conditions have minimal potential to impact surface waters.

Parcel 3 is suitable for the current land use and for the purposes of low rural residential (R2), environmental conservation (E2) and public recreation (RE1) land use.

Hydro has separately engaged a NSW EPA-accredited Site Auditor to issue a Site Audit Statement certifying that the site is suitable for the proposed use.

9 References

ANZECC & ARMCANZ (2000) Australian and New Zealand Guidelines for Fresh and Marine Water Quality;

ANZECC & NHMRC (1992) Australian and New Zealand Guidelines for the Assessment and Management of Contaminated Sites;

ENVIRON (2013) Preliminary Screening Level, Health Risk Assessment for Fluoride and Aluminium, Part of the Kurri Kurri Aluminium Smelter, Hart Road, Loxford;

Hunter Catchment Management Trust (2000) Wallis and Fishery Creeks Total Catchment Management Strategy;

NEPC (2013) National Environmental Protection (Assessment of Site Contamination) Amendment Measure (NEPM);

NSW DEC (2006) Guidelines for the NSW Site Auditor Scheme (Second Edition);

NSW DEC (2007) Guidelines for the Assessment and Management of Groundwater Contamination;

NSW DECC (2008) Waste Classification Guidelines;

NSW EPA (1994) Guidelines for Assessing Service Station Sites.

- AECOM. 2013. Hydro Aluminium 2012 Annual Environmental Management Review. 2 June 2013.
- NAS. 1971a. Biologic effects of atmospheric pollutants: Fluorides. Washington, DC: National Academy of Sciences, National Research Council, Committee on Biologic Effects of Atmospheric Pollutants, 239.
- WHO. 1997. Environmental health criteria for fluorides and fluorosis. 2nd ed. Internal Technical Report, International Program on Safety, WHO, Geneva

10 Limitations

ENVIRON Australia prepared this report in accordance with the scope of work as outlined in our proposal to Hydro Aluminium Kurri Kurri Pty Ltd dated 18 September 2013 and in accordance with our understanding and interpretation of current regulatory standards.

A representative program of sampling and laboratory analyses was undertaken as part of this investigation, based on past and present known uses of Residential Parcel 3. While every care has been taken, concentrations of contaminants measured may not be representative of conditions between the locations sampled and investigated. We cannot therefore preclude the presence of materials that may be hazardous.

Site conditions may change over time. This report is based on conditions encountered at Residential Parcel 3 at the time of the report and ENVIRON disclaims responsibility for any changes that may have occurred after this time.

The conclusions presented in this report represent ENVIRON's professional judgment based on information made available during the course of this assignment and are true and correct to the best of ENVIRON's knowledge as at the date of the assessment.

ENVIRON did not independently verify all of the written or oral information provided to ENVIRON during the course of this investigation. While ENVIRON has no reason to doubt the accuracy of the information provided to it, the report is complete and accurate only to the extent that the information provided to ENVIRON was itself complete and accurate.

This report does not purport to give legal advice. This advice can only be given by qualified legal advisors.

10.1 User Reliance

This report has been prepared exclusively for Hydro Aluminium Kurri Kurri Pty Ltd and may not be relied upon by any other person or entity without ENVIRON's express written permission.

Figures

Appendix A

Surrounding Groundwater Bores

Groundwater Bores near Parcel 3

Map created with NSW Natural Resource Atlas - http://www.nratlas.nsw.gov.au Monday, January 13, 2014

Map created with NSW Natural Resource Atlas - http://www.nratlas.nsw.gov.au Monday, September 02, 2013

Legend

Symbol	Layer	Custodian
0	Cities and large towns renderImage: Cannot build image from features	
Canal	Populated places renderImage: Cannot build image from features	
0	Towns	
	Groundwater Bores	
	Catchment Management Authority boundaries	
\sim	Major rivers	

Topographic base map

Print Report

Groundwater Works Summary

For information on the meaning of fields please see <u>Glossary</u> Document Generated on Monday, September 2, 2013

Works Details Site Details Form A Licensed Construction Water Bearing Zones Drillers Log

Work Requested -- GW201877

Works Details (top)

GROUNDWATER NUMBER	GW201877
LIC-NUM	20WA212098
AUTHORISED-PURPOSES	STOCK
INTENDED-PURPOSES	STOCK
WORK-TYPE	Bore
WORK-STATUS	Supply Obtained
CONSTRUCTION-METHOD	(Unknown)
OWNER-TYPE	Private
COMMENCE-DATE	
COMPLETION-DATE	1990-07-01
FINAL-DEPTH (metres)	26.00
DRILLED-DEPTH (metres)	26.00
CONTRACTOR-NAME	
DRILLER-NAME	
PROPERTY	N/A
GWMA	-
GW-ZONE	-
STANDING-WATER-LEVEL	
SALINITY	
YIELD	

Site Details (top)

REGION	20 - HUNTER
RIVER-BASIN	210 - HUNTER RIVER
AREA-DISTRICT	
CMA-MAP	9232-4S
GRID-ZONE	56/1
SCALE	1:25,000
ELEVATION	
ELEVATION-SOURCE	
NORTHING	6375745.00
EASTING	363670.00
LATITUDE	32 44' 52"
LONGITUDE	151 32' 41"
GS-MAP	

AMG-ZONE56COORD-SOURCEGIS - Geographic Information SystemREMARK

Form-A (top)

COUNTY	NORTHUMBERLAND
PARISH	MAITLAND
PORTION-LOT-DP	781//997350

Licensed (top)

COUNTY	NORTHUMBERLAND
PARISH	MAITLAND
PORTION-LOT-DP	781 997350

Water Bearing Zones (top)

no details

Drillers Log (top)

no details

Warning To Clients: This raw data has been supplied to the Department of Infrastructure, Planning and Natural Resources (DIPNR) by drillers, licensees and other sources. The DIPNR does not verify the accuracy of this data. The data is presented for use by you at your own risk. You should consider verifying this data before relying on it. Professional hydrogeological advice should be sought in interpreting and using this data.

Print Report

Groundwater Works Summary

For information on the meaning of fields please see <u>Glossary</u> Document Generated on Monday, September 2, 2013

Works Details Site Details Form A Licensed Construction Water Bearing Zones Drillers Log

Work Requested -- GW201357

Works Details (top)

GROUNDWATER NUMBER	GW201357
LIC-NUM	20BL172373
AUTHORISED-PURPOSES	MONITORING BORE
INTENDED-PURPOSES	MONITORING BORE
WORK-TYPE	Bore
WORK-STATUS	Equipped - bore used for obs
CONSTRUCTION-METHOD	Auger - Solid Flight
OWNER-TYPE	Private
COMMENCE-DATE	
COMPLETION-DATE	2009-12-03
FINAL-DEPTH (metres)	6.00
DRILLED-DEPTH (metres)	6.00
CONTRACTOR-NAME	
DRILLER-NAME	
PROPERTY	NA
GWMA	-
GW-ZONE	-
STANDING-WATER-LEVEL	
SALINITY	
YIELD	

Site Details (top)

20 - HUNTER
210 - HUNTER RIVER
9232-4S
56/1
1:25,000
6377825.00
361590.00
32 43' 43"
151 31' 23"
AMG-ZONE56COORD-SOURCEGPS - Global Positioning SystemREMARK

Form-A (top)

COUNTY	NORTHUMBERLAND
PARISH	GOSFORTH
PORTION-LOT-DP	2//1049391

Licensed (top)

COUNTY	NORTHUMBERLAND
PARISH	GOSFORTH
PORTION-LOT-DP	2 1049391

Construction (top)

Negative depths indicate Above Ground Level;H-Hole;P-Pipe;OD-Outside Diameter; ID-Inside Diameter;C-Cemented;SL-Slot Length;A-Aperture;GS-Grain Size;Q-Quantity

	PIPE- 10	COMPONENT- CODE	COMPONENT- TYPE	DEPTH- FROM (metres)	DEPTH- TO (metres)	OD (mm)	ID (mm) INTERVAL	DETAIL
1		Hole	Hole	0.00	6.00	150		Auger - So Flight
1 1		Casing	PVC Class 18	0.00	6.00	50	44	Screwed; Seated on Bottom; En cap
1 1		Opening	Slots - Horizontal	4.50	6.00	50		PVC Class 18; Mechanica Slotted; SL 45mm; A: 6mm; Screwed
1		Annulus	Cement	0.00	0.50	150	50	
1		Annulus	Bentonite	0.50	4.00	150	50	
1		Annulus	Waterworn/Rounded	4.00	6.00	150	50	Graded; G 2-5mm

Water Bearing Zones (top)

FROM- DEPTH (metres)	TO-DEPTH (metres)	THICKNESS (metres)	CAT-	W-	D-	YIELD	TEST-HOLE- DEPTH (metres)	DURATION SA	ALINITY
3.00	6.00	3.00							

Drillers Log (top)

FROM	то	THICKNESS	DESC
0.00	0.20	0.20	Clayey Sand, brown, fine-medium

GEO-MATERIAL COMMENT

0.20 6.00 5.80 Sandy Clay, light brown-light grey, fine-medium

Warning To Clients: This raw data has been supplied to the Department of Infrastructure, Planning and Natural Resources (DIPNR) by drillers, licensees and other sources. The DIPNR does not verify the accuracy of this data. The data is presented for use by you at your own risk. You should consider verifying this data before relying on it. Professional hydrogeological advice should be sought in interpreting and using this data.

Print Report

Groundwater Works Summary

For information on the meaning of fields please see <u>Glossary</u> Document Generated on Monday, September 2, 2013

Works Details Site Details Form A Licensed Construction Water Bearing Zones Drillers Log

Work Requested -- GW201106

Works Details (top)

GROUNDWATER NUMBER	GW201106
LIC-NUM	20BL171421
AUTHORISED-PURPOSES	RECREATION (GROUNDWATER)
INTENDED-PURPOSES	RECREATION (GROUNDWATER)
WORK-TYPE	Bore
WORK-STATUS	Supply Obtained
CONSTRUCTION-METHOD	Auger - Hollow Flight
OWNER-TYPE	Private
COMMENCE-DATE	
COMPLETION-DATE	2007-09-27
FINAL-DEPTH (metres)	14.50
DRILLED-DEPTH (metres)	14.50
CONTRACTOR-NAME	
DRILLER-NAME	
PROPERTY	MAITLAND CROQUET CLUB
GWMA	-
GW-ZONE	-
STANDING-WATER-LEVEL	7.20
SALINITY	
YIELD	2.00

Site Details (top)

REGION	20 - HUNTER
RIVER-BASIN	210 - HUNTER RIVER
AREA-DISTRICT	
CMA-MAP	9232-4S
GRID-ZONE	56/1
SCALE	1:25,000
ELEVATION	
ELEVATION-SOURCE	
NORTHING	6376386.00
EASTING	364823.00
LATITUDE	32 44' 31"
LONGITUDE	151 33' 26"
GS-MAP	

AMG-ZONE56COORD-SOURCEGPS - Global Positioning SystemREMARK

Form-A (top)

COUNTY	NORTHUMBERLAND
PARISH	MAITLAND
PORTION-LOT-DP	1//503194

Licensed (top)

COUNTYNORTHUMBERLANDPARISHMAITLANDPORTION-LOT-DP1 503194

Construction (top)

Negative depths indicate Above Ground Level;H-Hole;P-Pipe;OD-Outside Diameter; ID-Inside Diameter;C-Cemented;SL-Slot Length;A-Aperture;GS-Grain Size;Q-Quantity

HOLE- NO	PIPE- NO	COMPONENT- CODE	COMPONENT- TYPE	DEPTH- FROM (metres)	DEPTH- TO (metres)	OD (mm)	ID (mm) I	INTERVAL	DETAIL
1		Hole	Hole	0.00	14.50	180			Auger - Hollow Flight
1	1	Casing	PVC Class 9	-0.10	14.50	80	68.8		Glued; Seated on Bottom; End cap
1	1	Opening	Slots - Vertical	13.00	14.50	80			PVC Class 9; Casing - Drilled Holes; SL: 1.5mm; A: .8mm; Glued

Water Bearing Zones (top)

FROM- DEPTH (metres)	TO- DEPTH (metres)	THICKNESS (metres)	ROCK- CAT- DESC	S- W-L	D- D-L	YIELD	TEST- HOLE- DEPTH (metres)	DURATION SALINITY
7.20	14.50	7.30		7.20	7.50	2.00		1.00

Drillers Log (top)

FROM	то	THICKNESS	DESC	GEO-MATERIAL COMMENT
0.00	1.60	1.60	Silty Sandy Clay, brown	
1.60	5.00	3.40	Sandy Clay; brown/grey	
5.00	7.90	2.90	Silt, grey, with coarse Sand	

http://is2.dnr.nsw.gov.au/proxy/dipnr/gwworks?GWWID=GW201106

7.90 14.50 6.60 Gravel; medium to very large

Warning To Clients: This raw data has been supplied to the Department of Infrastructure, Planning and Natural Resources (DIPNR) by drillers, licensees and other sources. The DIPNR does not verify the accuracy of this data. The data is presented for use by you at your own risk. You should consider verifying this data before relying on it. Professional hydrogeological advice should be sought in interpreting and using this data.

Print Report

Groundwater Works Summary

For information on the meaning of fields please see <u>Glossary</u> Document Generated on Monday, September 2, 2013

Works Details Site Details Form A Licensed Construction Water Bearing Zones Drillers Log

Work Requested -- GW079091

Works Details (top)

GROUNDWATER NUMBER GW079091 LIC-NUM **AUTHORISED-PURPOSES** INTENDED-PURPOSES MONITORING BORE WORK-TYPE Bore WORK-STATUS (Unknown) CONSTRUCTION-METHOD (Unknown) **OWNER-TYPE** (Unknown) **COMMENCE-DATE COMPLETION-DATE FINAL-DEPTH** (metres) **DRILLED-DEPTH** (metres) **CONTRACTOR-NAME DRILLER-NAME** PROPERTY **GWMA GW-ZONE** STANDING-WATER-LEVEL **SALINITY** YIELD

Site Details (top)

20 - HUNTER REGION **RIVER-BASIN AREA-DISTRICT CMA-MAP GRID-ZONE SCALE ELEVATION ELEVATION-SOURCE** NORTHING 6371369.00 EASTING 358209.00 LATITUDE 32 47' 11" 151 29' 9" LONGITUDE **GS-MAP**

56

AMG-ZONE COORD-SOURCE REMARK

Form-A (top)

no details

Licensed (top)

no details

Water Bearing Zones (top)

no details

Drillers Log (top)

no details

Warning To Clients: This raw data has been supplied to the Department of Infrastructure, Planning and Natural Resources (DIPNR) by drillers, licensees and other sources. The DIPNR does not verify the accuracy of this data. The data is presented for use by you at your own risk. You should consider verifying this data before relying on it. Professional hydrogeological advice should be sought in interpreting and using this data.

Print Report

Groundwater Works Summary

For information on the meaning of fields please see <u>Glossary</u> Document Generated on Monday, September 2, 2013

Works Details Site Details Form A Licensed Construction Water Bearing Zones Drillers Log

Work Requested -- GW066948

Works Details (top)

GROUNDWATER NUMBER	GW066948
LIC-NUM	20BL144247
AUTHORISED-PURPOSES	DOMESTIC
INTENDED-PURPOSES	DOMESTIC
WORK-TYPE	Bore
WORK-STATUS	Supply Obtained
CONSTRUCTION-METHOD	(Unknown)
OWNER-TYPE	Private
COMMENCE-DATE	
COMPLETION-DATE	
FINAL-DEPTH (metres)	14.00
DRILLED-DEPTH (metres)	14.00
CONTRACTOR-NAME	
DRILLER-NAME	
PROPERTY	N/A
GWMA	-
GW-ZONE	-
STANDING-WATER-LEVEL	7.50
SALINITY	
YIELD	

Site Details (top)

REGION	20 - HUNTER
RIVER-BASIN	210 - HUNTER RIVER
AREA-DISTRICT	
CMA-MAP	
GRID-ZONE	
SCALE	
ELEVATION	
ELEVATION-SOURCE	Est. Contour 8-15M.
NORTHING	6375529.00
EASTING	364891.00
LATITUDE	32 44' 59"
LONGITUDE	151 33' 28"
GS-MAP	0053C4

AMG-ZONE 56 COORD-SOURCE GD.,ACC.MAP REMARK

Form-A (top)

COUNTY	NORTHUMBERLAND
PARISH	MAITLAND
PORTION-LOT-DP	209

Licensed (top)

COUNTYNORTHUMBERLANDPARISHMAITLANDPORTION-LOT-DPB 162784

Construction (top)

Negative depths indicate Above Ground Level;H-Hole;P-Pipe;OD-Outside Diameter; ID-Inside Diameter;C-Cemented;SL-Slot Length;A-Aperture;GS-Grain Size;Q-Quantity

HOLE NO	- PIPE NO	COMPONENT-	COMPONENT- TYPE	DEPTH- FROM (metres)	DEPTH- TO (metres)	OD I (mm) (D mm)	INTERVAL	DETAIL
1	1	Casing	P.V.C.	0.00	14.00	100			Seated on Bottom
1	1	Opening	Slots - Horizontal	8.00	14.00	100		1	SL: 0mm; A: 0mm
1	1	Annulus	Waterworn/Rounded	6.00	14.00	200			Graded; GS: 1.5- 3mm

Water Bearing Zones (top)

FROM- DEPTH (metres)	TO- DEPTH (metres)	THICKNESS (metres)	ROCK-CAT- DESC	S- W-L	D- D- L	YIELD	TEST- HOLE- DEPTH (metres)	DURATION SALINITY
7.50	14.00	6.50	Unconsolidated	7.50				

Drillers Log (top)

no details

Warning To Clients: This raw data has been supplied to the Department of Infrastructure, Planning and Natural Resources (DIPNR) by drillers, licensees and other sources. The DIPNR does not verify the accuracy of this data. The data is presented for use by you at your own risk. You should consider verifying this data before relying on it. Professional hydrogeological advice should be sought in interpreting and using this data.

Print Report

Groundwater Works Summary

For information on the meaning of fields please see <u>Glossary</u> Document Generated on Monday, September 2, 2013

Works Details Site Details Form A Licensed Construction Water Bearing Zones Drillers Log

Work Requested -- GW051647

Works Details (top)

GROUNDWATER NUMBER	GW051647
LIC-NUM	20BL112319
AUTHORISED-PURPOSES	STOCK
INTENDED-PURPOSES	STOCK
WORK-TYPE	Bore
WORK-STATUS	(Unknown)
CONSTRUCTION-METHOD	Rotary
OWNER-TYPE	Private
COMMENCE-DATE	
COMPLETION-DATE	1980-09-01
FINAL-DEPTH (metres)	12.00
DRILLED-DEPTH (metres)	12.00
CONTRACTOR-NAME	
DRILLER-NAME	
PROPERTY	KARINYA
GWMA	-
GW-ZONE	-
STANDING-WATER-LEVEL	
SALINITY	
YIELD	

Site Details (top)

RIVER-BASIN 210 - HUNTER RIVER AREA-DISTRICT 9232-3N GRID-ZONE 56/1
CMA-MAP 9232-3N
······
GRID-ZONE 56/1
SCALE 1:25,000
ELEVATION
ELEVATION-SOURCE (Unknown)
NORTHING 6373006.00
EASTING 362896.00
LATITUDE 32 46' 20"
LONGITUDE 151 32' 10"
GS-MAP 0053C4

AMG-ZONE 56 COORD-SOURCE GD.,ACC.MAP REMARK

Form-A (top)

COUNTY	NORTHUMBERLAND
PARISH	MAITLAND
PORTION-LOT-DP	L9 (1)

Licensed (top)

COUNTY	NORTHUMBERLAND
PARISH	MAITLAND
PORTION-LOT-DP	L9 (P+ Port 1)

Water Bearing Zones (top)

no details

Drillers Log (top)

FROM	то	THICKNESS	DESC	GEO-MATERIAL COMMENT
0.00	0.15	0.15	Topsoil	
0.15	3.00	2.85	Clay	
3.00	3.81	0.81	Sand Yellow	
3.81	4.57	0.76	Sand White	
4.57	6.10	1.53	Clay Sand	
6.10	12.00	5.90	Sandstone Hard	

Warning To Clients: This raw data has been supplied to the Department of Infrastructure, Planning and Natural Resources (DIPNR) by drillers, licensees and other sources. The DIPNR does not verify the accuracy of this data. The data is presented for use by you at your own risk. You should consider verifying this data before relying on it. Professional hydrogeological advice should be sought in interpreting and using this data.

Print Report

Groundwater Works Summary

For information on the meaning of fields please see <u>Glossary</u> Document Generated on Monday, September 2, 2013

Works Details Site Details Form A Licensed Construction Water Bearing Zones Drillers Log

Work Requested -- GW029088

Works Details (top)

LIC-NUM20BL021619AUTHORISED-PURPOSESIRRIGATIONSTOCIAINTENDED-PURPOSESWORK-TYPEWORK-TYPEBoreWORK-STATUS(Unknown)CONSTRUCTION-METHODRotaryMudOWNER-TYPEPrivateCOMMENCE-DATEFINAL-DEPTH (metres)PINAL-DEPTH (metres)39.00DRILLED-NAMEJondPROPERTYN/AGWMA603 - SYDNEY BASINGWMA-GW-ZONE-STANDING-WATER-LEVEL-YIELD-	GROUNDWATER NUMBER	GW029088
INTENDED-PURPOSESNOT KNOWNWORK-TYPEBoreWORK-STATUS(Unknown)CONSTRUCTION-METHODRotary MudOWNER-TYPEPrivateCOMMENCE-DATECOMPLETION-DATEFINAL-DEPTH (metres)39.00DRILLED-DEPTH (metres)39.00CONTRACTOR-NAMEJanuarian (Sama)PROPERTYN/AGWMA603 - SYDNEY BASINGW-ZONE-STANDING-WATER-LEVELSALINITY	LIC-NUM	20BL021619
WORK-TYPEBoreWORK-STATUS(Unknown)CONSTRUCTION-METHODRotary MudOWNER-TYPEPrivateCOMMENCE-DATE-COMPLETION-DATE-FINAL-DEPTH (metres)39.00DRILLED-DEPTH (metres)39.00DRILLER-NAME-PROPERTYN/AGWMA603 - SYDNEY BASINGWMA-AGW-ZONE-STANDING-WATER-LEVEL-KALINITY-	AUTHORISED-PURPOSES	IRRIGATION STOCK
WORK-STATUS(Unknown)CONSTRUCTION-METHODRotary MudOWNER-TYPEPrivateCOMMENCE-DATECOMPLETION-DATEFINAL-DEPTH (metres)39.00DRILLED-DEPTH (metres)39.00CONTRACTOR-NAMEJanuarian (Sana)DRILLER-NAMEN/APROPERTYN/AGWMA603 - SYDNEY BASINGW-ZONE-STANDING-WATER-LEVELSALINITY	INTENDED-PURPOSES	NOT KNOWN
CONSTRUCTION-METHODRotary MudOWNER-TYPEPrivateOWNER-TYPEPrivateCOMMENCE-DATE-COMPLETION-DATE39.00PINAL-DEPTH (metres)39.00DRILLED-DEPTH (metres)39.00DRILLER-NAME-PROPERTYN/AGWMA603 - SYDNEY BASINGW-ZONE-STANDING-WATER-LEVEL-SALINITY-	WORK-TYPE	Bore
OWNER-TYPEPrivateCOMMENCE-DATEFivateCOMPLETION-DATE39.00FINAL-DEPTH (metres)39.00DRILLED-DEPTH (metres)39.00CONTRACTOR-NAMEJanuary (Contractor)DRILLER-NAMEKanage (Contractor)PROPERTYN/AGWMA603 - SYDNEY BASINGW-ZONE-STANDING-WATER-LEVELSALINITY	WORK-STATUS	(Unknown)
COMMENCE-DATE COMPLETION-DATE FINAL-DEPTH (metres) 39.00 DRILLED-DEPTH (metres) 39.00 CONTRACTOR-NAME DRILLER-NAME PROPERTY N/A GWMA 603 - SYDNEY BASIN GW-ZONE - STANDING-WATER-LEVEL SALINITY	CONSTRUCTION-METHOD	Rotary Mud
COMPLETION-DATE FINAL-DEPTH (metres) 39.00 DRILLED-DEPTH (metres) 39.00 CONTRACTOR-NAME DRILLER-NAME PROPERTY N/A GWMA 603 - SYDNEY BASIN GW-ZONE - STANDING-WATER-LEVEL SALINITY	OWNER-TYPE	Private
FINAL-DEPTH (metres)39.00DRILLED-DEPTH (metres)39.00CONTRACTOR-NAME39.00DRILLER-NAMEN/APROPERTYN/AGWMA603 - SYDNEY BASINGW-ZONE-STANDING-WATER-LEVELSALINITY	COMMENCE-DATE	
DRILLED-DEPTH (metres)39.00CONTRACTOR-NAME39.00DRILLER-NAMEN/APROPERTYN/AGWMA603 - SYDNEY BASINGW-ZONE-STANDING-WATER-LEVEL-SALINITY-	COMPLETION-DATE	
CONTRACTOR-NAME DRILLER-NAME PROPERTY N/A GWMA 603 - SYDNEY BASIN GW-ZONE - STANDING-WATER-LEVEL SALINITY	FINAL-DEPTH (metres)	39.00
DRILLER-NAMEPROPERTYN/AGWMA603 - SYDNEY BASINGW-ZONE-STANDING-WATER-LEVELSALINITY	DRILLED-DEPTH (metres)	39.00
PROPERTYN/AGWMA603 - SYDNEY BASINGW-ZONE-STANDING-WATER-LEVEL-SALINITY-	CONTRACTOR-NAME	
GWMA603 - SYDNEY BASINGW-ZONE-STANDING-WATER-LEVELSALINITY	DRILLER-NAME	
GW-ZONE - STANDING-WATER-LEVEL SALINITY	PROPERTY	N/A
STANDING-WATER-LEVEL SALINITY	GWMA	603 - SYDNEY BASIN
SALINITY	GW-ZONE	-
·····	STANDING-WATER-LEVEL	
YIELD	SALINITY	
	YIELD	

Site Details (top)

20 - HUNTER
210 - HUNTER RIVER
9132-1S
56/1
1:25,000
(Unknown)
6376436.00
359230.00
32 44' 27"
151 29' 51"
0053B3

AMG-ZONE 56 COORD-SOURCE GD.,ACC.MAP REMARK

Form-A (top)

COUNTY	NORTHUMBERLAND
PARISH	GOSFORTH
PORTION-LOT-DP	77

Licensed (top)

COUNTY	NORTHUMBERLAND
PARISH	GOSFORTH
PORTION-LOT-DP	70 1104158

Construction (top)

Negative depths indicate Above Ground Level;H-Hole;P-Pipe;OD-Outside Diameter; ID-Inside Diameter;C-Cemented;SL-Slot Length;A-Aperture;GS-Grain Size;Q-Quantity

HOLE- NO	PIPE- NO	COMPONENT- CODE	COMPONENT- TYPE	DEPTH- FROM (metres)	DEPTH- TO (metres)	OD (mm)	ID (mm)	INTERVAL	DETAIL
1	1	Casing	P.V.C.	-0.20	0.40	127			Driven into Hole

Water Bearing Zones (top)

FROM- DEPTH (metres)		THICKNESS (metres)	ROCK- CAT- DESC	S- W-L	D- D- YIEL[-	TEST- HOLE- DEPTH (metres)	DURATION SALINITY
11.60	11.60	0.00	Fractured	3.00	0.13		(Unknown)

Drillers Log (top)

FROM	ТО	THICKNESS	DESC	GEO-MATERIAL COMMENT
0.00	6.10	6.10	Clay Sand	
6.10	24.38	18.28	Shale Water Supply	
24.38	39.01	14.63	Sandstone	

Warning To Clients: This raw data has been supplied to the Department of Infrastructure, Planning and Natural Resources (DIPNR) by drillers, licensees and other sources. The DIPNR does not verify the accuracy of this data. The data is presented for use by you at your own risk. You should consider verifying this data before relying on it. Professional hydrogeological advice should be sought in interpreting and using this data.

Appendix B Site Photographs

Photo 1: Farm Dam, Lot 2 DP62332, Looking west.

Photo 2: Remnant Rail Embankment, Lot 3, DP62332, Looking west

Title:	Phase 2 ESA	Approved:	Project-Nr.:	Date:
Site:	Parcel 3	SC	AS130348	14/03/2014
Client:	Hydro Aluminium Kurri Kurri		13 🖓	VIRON

Photo 3: Lot 3, looking North-east and east..

Photo 4: Lot 1 DP71130. Looking north-east - east

Title:	Phase 2 ESA	Approved:	Project-Nr.:	Date:
Site:	Parcel 3	SC	AS130348	14/03/2014
Client:	Hydro Aluminium Kurri Kurri		13 🖓	NVIRON

Photo 5:Lot 1 DP998540, North-east Area, looking east.

Title:	Phase 2 ESA	Approved:	Project-Nr.:	Date:
Site:	Parcel 3	SC	AS130348	14/03/2014
Client:	Hydro Aluminium Kurri Kurri		13 🖓	NVIRON

Appendix C

Field Information Sheets

Project No .: AS130	348	Date and Time: 22/10/13		
Land Parcel: RES-3		Weather: Fine / Hot.		
Lot and DP: Lot 1		Environ Personnel: SC		
ET CLUMPER AND	i in a state of the state of th			
Topography	Open. Flat. po	ddock gronssel,		
Surface Geology	no outcrop.	ddock gronssort,		
Fill evident?	ho			
Hummocky ground?	no	· · · · · · · · · · · · · · · · · · ·		
Structures on site?	n0			
Location of structures	no			
Building materials used in structures	no			
Asbestos debris on site?	no			
Location of asbestos debris?	no			
Volume of asbestos debris?	ND.			
	ter and the second s			
Point of Interest		Easting Northing		
	·····			
The second second			17-15-2	
756-759.	From NW comes			
	· · · · · · · · · · · · · · · · · · ·			
The states and the	4.5 ·		19(fer Bett)	
Open flat	r paddork - eyers -	(orend,		
	<u></u>			

N

Project No.: ASI30	346	Date and Time: 22/10/13 - 12:30.		
Land Parcel: RES		Weather: Fine /Hot		
Lot and DP: LoT:	2 DP62332	Environ Personnel: 50		
Manifester of the second of th	A. Andrew Mar			
Topography	Flat open s	slope N->S ≤ 10 with slove		
Surface Geology	No outcrop -	- Topson(
Fill evident?	\wedge_{Θ}	e e e e e e e e e e e e e e e e e e e		
Hummocky ground?	slightly (livestock)		
Structures on site?	Damm	rid west (near rail line).		
Location of structures	~	· · · · · · · · · · · · · · · · · · ·		
Building materials used in structures	NG			
Asbestos debris on site?	ng			
Location of asbestos debris?	na			
Volume of asbestos debris?	na.			
	<u>(1</u>)			
Point of Interest		Easting Northing		
Dam		151. 50847. 32.77718		
inter a long at the state of the state	vi e novel			
750 252 - 500	his and start from and hot start			
750-752 - From 753-755 Dam.	JW COINC			
Open +	teld, damin	mid-west		
G	" - Lof 1			
E	- old rail spur	Lot 3.		
		/		

\\AUHUNFP1\Shared_Files\Projects\Hydro Australia\Site Walkover Checklst.doc

ENVIRON

Project No.: AS130348		Date and Time: 22/10/13 11:45		
Land Parcel: RES	3	Weather: Fine / Hot		
Lot and DP: Lot 3	PP62332	Environ Personnel: SC		
Elicitezeral Allone	80			
Topography	Slisht Slope	Nto S. 1-2"	>	
Surface Geology	-no outcrop	Surfine topso	ĩl.	
Fill evident?		I rail spur Embankme		
Hummocky ground?	m0			
Structures on site?	ho			
Location of structures	NA			
Building materials used in structures	NA			
Asbestos debris on site?	NA			
Location of asbestos debris?	NA	Ť.		
Volume of asbestos debris?	NA.	6		
cir. Method of Inter	est			
Point of Interest		Easting	Northing	
Small Deem toll	car mid-costan hen	4- 151-51261	32 77696	
a Farmer Farmer and Farmer	renks Tabas			
74-2 2 744 - NES		1 cours) from i idda		
745-748 - FION	along real line (cla NW corner ting 5.	C THE CONTRACT OF THE		
749 - Dan 1	Ting S.		18	
	0	·····		
නෙක ලැබුණු පුදු පුදුරුණු පත				
All Contraction of the for committee				
DRun aruss conned succedor & purplaced an EST				
by bushland on w , rail ambankment (defined by a				
line o	Open, grass-conned paddock bordered on SEE by bushland on w - rail ambandment (defined by a line of trees).			
	Sande - (SF			

Project No.: ASIZ	50348	Date and Time: 22	10/13
Land Parcel: RES	3	Weather: Fine	Hot
Lot and DP: Lot1		Weather: Fine / Environ Personnel:	SC
Bit Distanciants	949 - 188		
Topography	Generally Flat	with drainsy	line's.
Surface Geology	no outcop seen	n.	
Fill evident?	none taud -	form dama (pu	sched art from hole)
Hummocky ground?	ND 1	······	
Structures on site?	No		
Location of structures	MA		
Building materials used in structures	N/A		
Asbestos debris on site?	NA		
Location of asbestos debris?	N/A		
Volume of asbestos debris?	N/A		
	ter and the second s		
Point of Interest		Easting	Northing
er de la comparta de	alan yakan		
760 - N. Dam	1) and 1		
761-763 W mid 764-766 E "	Jam.		
1127-171 At S.E	end - S->N Parl	/	
772-776 - Mid h	1 site 5->N law.		
777 -786 = 31	60° pan N->N	from N end	((150m SE of Denn).
antes strangelice			
Very large open/ paddocks in N& SV ang. - copprox 25-30% bush in SE areq. - Small dam in N			
- copprox 25-30% bush in St areq.			
- Small dam in N - Lorge dan in control west.			
× .			
Bush ava tena	ed - gates		

\\AUHUNFP1\Shared_Files\Projects\Hydro Australia\Site Walkover Checklst.doc

Appendix D

Results Tables

TABLE A: Soil Analytical Results - Grid Sampling

Sample Depth: 0.01m - 0.02m Sampling Date: 22/10/13 Laboratory PQL: 0.5 mg/kg Site Specific HIL - Fluoride: 400mg/kg

	Soluble
Sampla	Fluoride
Sample Identification	
Identification	mg/kg (1:5
SF11	soil:water)
	2
SF12	2
SF13	4
SF14	2
SF15	2
SF16	2
SF17	2 2 2 2 2
SF18	1
SF19	2
SF20	2
SF21	2
SF22	2
SF23	2 2 1 2 2 2 2 2 3
SF24	2
SF25	2
SF26	2
SF27	2
SF28	3
SF29	<1
SF30	3
SF31	<1
SF32	1
SF33	1
SF34	<1
SF35	2
SF36	2
SF37	2 2 2
SF38	2

cell shaded grey where investigation criteria exceeded

TABLE B: Soil Analytical Results - Former Rail Embankment

TABLE B: Soil Analytical Results - Former Sample Identification	Rail Emb	bankment		Guidelir				S1	S2	S3	S4	S5	S6	S7	S8	S9	S10
Sample Depth (m)				Guideill				31	32		- 54		30	5/	30	- 29	310
Date	PQL	HIL 'A' ^A	HIL 'B' ^B	HSL 'A & B' ^C Sand 0m to 1m	EIL Urban Residential (lowest ACL) ^D	ESL Urban Residential (Coarse Soil)	Mgt Limits Residential	22/10/2013	22/10/2013	22/10/2013	22/10/2013	22/10/2013	22/10/2013	22/10/2013	22/10/2013	22/10/2013	22/10/2013
Sample Profile								FILL	FILL	FILL	FILL	FILL	FILL	FILL	FILL	FILL	TOPSOIL
Sample collected by		SC	SC	SC	SC	SC	SC	SC	SC	SC	SC						
Polycyclic Aromatic Hydrocarbons (PAH)			1		-												
Naphthalene	0.5			3	170			<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Acenaphthylene	0.5							<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Acenaphthene	0.5							<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Fluorene	0.5							<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Phenanthrene	0.5							<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.8	0.6	<0.5	<0.5
Anthracene	0.5							<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Fluoranthene Pyrene	0.5	-						<0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	1 0.9	0.6 <0.5	<0.5 <0.5	<0.5
		-						<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.9	<0.5	<0.5	<0.5
Benz(a)anthracene Chrysene	0.5	-						<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(b)fluoranthene	0.5							<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(k)fluoranthene	0.5							<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene	0.5					0.7		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Indeno(1.2.3.cd)pyrene	0.5					0.7		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Dibenz(a.h)anthracene	0.5							<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(g.h.i)perylene	0.5							<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Sum of polycyclic aromatic hydrocarbons	0.5	300	400					<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	2.7	1.2	<0.5	<0.5
Benzo(a)pyrene TEQ (zero)	0.5	3	4					<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Identification of Asbestos in bulk samples					-												
Asbestos Detected	0.1							No	No	No	No	No	No	No	No	No	No
Asbestos Type Sample weight (dry)	1 0.01							- 22.6	- 27.6	- 31.8	- 23.8	26.7	- 36.3	- 25.4	- 28.7	- 29.1	- 28.6
Cample weight (diy)	0.01							22.0	21.0	51.0	20.0	20.7	30.3	20.4	20.7	23.1	20.0
Asbestos Quantification		1															
Weight Used for % Calculation (kg)	0.0001							0.0226	0.0276	0.0318	0.0238	0.0267	0.0363	0.0254	0.0287	0.0291	0.0286
Asbestos Containing Material (g)	0.1							<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fibrous Asbestos (g)	0.002							< 0.002	<0.002	< 0.002	<0.002	<0.002	< 0.002	< 0.002	< 0.002	< 0.002	<0.002
Asbestos Containing Material (as 15% Asbestos in ACM >7mm) - %	0.01							<0.07	<0.06	<0.05	<0.07	<0.06	<0.05	<0.06	<0.06	<0.06	<0.06
Asbestos Fines and Fibrous Asbestos (<7mm) - %	0.001	0.00%						<0.009	<0.008	<0.007	<0.009	<0.008	<0.006	<0.008	<0.007	<0.007	<0.007
Trace Asbestos Detected (fibres)	5							No	No	No	No	No	No	No	No	No	No
Total Recoverable Hydrocarbons (TRH) - NEP																	
TRH C6 - C10	25							<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
C6 - C10 Fraction minus BTEX (F1)	25			45		180	800	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
TRH >C10-C16 minus napthalene (F2)	50			110		120	1000	100	<50	60	160	<50	120	<50	<50	80	110
TRH >C16-C34	100					1300	3500	760	1390	320	1150	<100	830	320	200	330	520
TRH >C34-C40	100					5600	10 000	350	660	<100	560	<100	500	110	<100	140	170
C10 - C36 Fraction (sum)		<u> </u>						1210	2050	380	1870	<50	1450	430	200	550	800
BTEXN		1															
Benzene	0.2		0.5			65		<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	0.5		160			85		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	0.5		55			70		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
meta- & para-Xylene	0.5		40			45		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
ortho-Xylene	0.5		40			45		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Sum of BTEX	0.2							<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Total Xylenes	0.5							<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Naphthalene	1	I						<1	<1	<1	<1	<1	<1	<1	<1	<1	<1

All results are in mg/kg unless otherwise indicated.

^AHIL A - residential landuse with garden/accessible soil.

^B HIL B - residential with minimal opportunities for soil access (highrise buildings/flats).

^C HSL A & B are the same landuses as the HILs. The values for residential A and B are combined in the HSL tables as they represent vapour exposure risk and are based on the same amount of time spent indoors. The HSL for shallow sand was used and is therefore conservative.

^D EILs represent the most conservative value possible as the lowest value for added contaminant limit (ACL) was used, irrespective of soil properties and ambient background concentration.

* Site specific health investigation criteria for Hydro Aluminium Kurri Kurri for Fluoride.

** ESL for TRH >C16-C34 in fine soil is also provided for reference.

Results shaded grey are in excess of the investigation criteria.

HILs for cyanide are based on free cyanide.

HILs for chromium are based on Cr (VI).

The EIL for chromium are based on Cr (III).

Benzo(a)gyrene TEQ is indicative of carcinogenic PAHs: the HL is based on the 8 carcinogenic PAHs and their TEFs (potency relative to B(a)P) adopted by CCME 2008. The B(a)P TEQ is calculated by multiplying the concentration of each carcinogenic PAH in the sample by its B(a)P TEF and summing these products.

TABLE C: Soil Quality Assurance/ Q	uality Contr	ol Results										
Sample Identification	S5	QA1		SF17	QA2		SF27	QA4		SF36	QA3	
Sample Depth (m)	0.0	0.01-0.02 Intralaboratory Fill soil matrix		0.01	0.01-0.02			-0.02		0.01		
Duplicate Type	Intrala			Intralaboratory		RPD %	Intralaboratory		RPD %	Intralat	oratory	RPD %
Sample Profile					psoil		Topsoil			Topsoil		
Sample collected by		SC			SC		SC			SC		
Fluoride					ſ							
Soluble Fluoride	-	-	-	2	1	100.0	2	2	0.0	2	2	0.0
Polycyclic Aromatic Hydrocarbons (PAH)											
Naphthalene	<0.5	<0.5	0.0	-	-	-	-	-	-	-	-	-
Acenaphthylene	< 0.5	<0.5	0.0	-	-	-	-	-	-	-	-	-
Acenaphthene	< 0.5	<0.5	0.0	-	-	-	-	-	-	-	-	-
Fluorene	< 0.5	<0.5	0.0	-	-	-	-	-	-	-	-	-
Phenanthrene	< 0.5	<0.5	0.0	-	-	-	-	-	-	-	-	-
Anthracene	< 0.5	<0.5	0.0	-	-	-	-	-	-	-	-	-
Fluoranthene	<0.5	<0.5	0.0	-	-	-	-	-	-	-	-	-
Pyrene	<0.5	<0.5	0.0	-	-	-	-	-	-	-	-	-
Benz(a)anthracene	<0.5	<0.5	0.0	-	-	-	-	-	-	-	-	-
Chrysene	<0.5	<0.5	0.0	-	-	-	-	-	-	-	-	-
Benzo(b)fluoranthene	<0.5	<0.5	0.0	-	-	-	-	-	-	-	-	-
Benzo(k)fluoranthene	<0.5	<0.5	0.0	-	-	-	-	-	-	-	-	-
Benzo(a) pyrene	<0.5	<0.5	0.0	-	-	-	-	-	-	-	-	-
Indeno(1,2,3-c,d)pyrene	<0.5	<0.5	0.0	-	-	-	-	-	-	-	-	-
Dibenz(a,h)anthracene	<0.5	<0.5	0.0	-	-	-	-	-	-	-	-	-
Benzo(g,h,i)perylene	<0.5	<0.5	0.0	-	-	-	-	-	-	-	-	-
Total +ve	<0.5	<0.5	0.0	-	-	-	-	-	-	-	-	-
Benzo(a)pyrene TEQ	<0.5	<0.5	0.0	-	-	-	-	-	-	-	-	-
Total Recoverable Hydrocarbons (TRH)												
TRH C6-C9	<25	<25	0.0	-	-	-	-	-	-	-	-	-
TRH C10-C14	<50	<50	0.0	-	-	-	-	-	-	-	-	-
TRH C15-C28	<100	<100	0.0	-	-	-	-	-	-	-	-	-
TRH C29-C36	<100	<100	0.0	-	-	-	-	-	-	-	-	-
TRH C10-C36	<250	<250	0.0	-	-	-	-	-	-	-	-	-
Total Recoverable Hydrocarbons (TRH) -												
TRH C6 - C10	<25	<25	0.0	-	-	-	-	-	-	-	-	-
vTPH C6 - C10 less BTEX	<25	<25	0.0	-	-	-	-	-	-	-	-	-
TRH >C10-C16	<50	<50	0.0	-	-	-	-	-	-	-	-	-
TRH >C16-C34	<50	<50	0.0	-	-	-	-	-	-	-	-	-
TRH >C34-C40	<100	<100	0.0	-	-	-	-	-	-	-	-	-
BTEX												
Benzene	<0.2	<0.2	0.0	-	-	-	-	-	-	-	-	-
Toluene	<0.5	<0.5	0.0	-	-	-	-	-	-	-	-	-
Ethylbenzene	<1	<1	0.0	-	-	-	-	-	-	-	-	-
m+p-xylene	<2	<2	0.0	-	-	-	-	-	-	-	-	-
o-Xylene	<1	<1	0.0	-	-	-	-	-	-	-	-	-
Asbestos Quantification												
Asbestos Fines and Fibrous Asbestos	0.186	0.186	0.0	-	-	-	-	-	-	-	-	-
(<7mm) - % Note all units in mg/kg		I	I	I	I	I	I	I	I	L	I	1

Note all units in mg/kg

BOLD identifies where RPD results

intralaboratory	interlaboratory	_
>50	>60	where both sample results exceed ten x PQL
>75	>85	where both sample results are within 5 to 10 x PQL
>100	>100	where both sample results are within 2 to 5 x PQL
AD>2.5 * PQL		where one or both sample results are <2 x PQL
BOLD identified where blanks >0		-

Where results are within two of the above ranges the most conservative criteria have been used to assess duplicate performance

Appendix E

Laboratory Reports

	CE	RTIFICATE OF ANALYSIS	
Work Order	EN1303916	Page	: 1 of 18
Amendment	÷ 1		
Client	ENVIRON	Laboratory	: Environmental Division Newcastle
Contact	: MR STEVE CADMAN	Contact	: Peter Keyte
Address	: PO Box 435	Address	: 5/585 Maitland Road Mayfield West NSW Australia 2304
	THE JUNCTION NSW 2291		
E-mail	: scadman@environcorp.com	E-mail	: peter.keyte@als.com.au
Telephone	:	Telephone	: 61-2-4968-9433
Facsimile	:	Facsimile	: +61-2-4968 0349
Project	: AS130348	QC Level	: NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Order number	:		
C-O-C number	: 155061-64	Date Samples Received	: 24-OCT-2013
Sampler	: SC	Issue Date	: 19-FEB-2014
Site	:		
		No. of samples received	: 42
Quote number	: SY/433/13	No. of samples analysed	: 42

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Descriptive Results
- Surrogate Control Limits

Address 5/585 Maitland Road Mayfield West NSW Australia 2304 PHONE +61 2 4014 2500 Facsimile +61 2 4968 0349 Environmental Division Newcastle ABN 84 009 936 029 Part of the ALS Group An ALS Limited Company

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

- EA200 Legend
- EA200 'Am' Amosite (brown asbestos)
- EA200 'Ch' Chrysotile (white asbestos)
- EA200 'Cr' Crocidolite (blue asbestos)
- EA200 'Trace' Asbestos fibres detected by trace analysis per AS4964. The result can be interpreted that the sample contains detectable 'respirable' asbestos fibres
- EA200: 'UMF' Unknown Mineral Fibres. "-" indicates fibres detected may or may not be asbestos fibres. Confirmation by alternative techniques is recommended.
- EA200: Asbestos Identification Samples were analysed by Polarised Light Microscopy including dispersion staining.
- EA200: Negative results for vinyl tiles should be confirmed by an independent analytical technique.
- EA200Q: ALS laboratory procedures and methods used for the identification and quantitation of asbestos are consistent with AS4964-2004 and the requirements of the 2013 NEPM for Assessment of Site Contamination
- EA200Q: Asbestos weights and percentages are not covered under the Scope of NATA Accreditation.
 Weights of Asbestos are based on extracted bulk asbestos, fibre bundles, and/or ACM and do not include respirable fibres (if present).
 Percentages for Asbestos content in ACM are based on the 2013 NEPM default values. All numerical results under this method are approximate and should be used as a guide only.
- EP080: Poor surrogate recoveries due to matrix interferences.
- This report has been amended following minor LIMS report formatting corrections. All analysis results are as per the previous report

	NATA Accredited Laboratory 825	Signatories This document has been electronically	signed by the authorized signatories indic	ated below. Electronic signing has been carried out in
NATA	Accredited for compliance with ISO/IEC 17025.	compliance with procedures specified in 21 C Signatories	CFR Part 11. Position	Accreditation Category
		Ashesh Patel	Inorganic Chemist	Sydney Inorganics
		Celine Conceicao	Senior Spectroscopist	Sydney Inorganics
WORLD RECOGNISED		Christopher Owler	Team Leader - Asbestos	Newcastle - Asbestos
		Pabi Subba	Senior Organic Chemist	Sydney Organics
		Sanjeshni Jyoti Mala	Senior Chemist Volatile	Sydney Organics
		Wisam Marassa	Inorganics Coordinator	Sydney Inorganics

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	RES 3 - S2	RES 3 - S3	RES 3 - QA1	RES 3 - S4	RES 3 - S1
	Ci	lient samplii	ng date / time	22-OCT-2013 15:00				
Compound	CAS Number	LOR	Unit	EN1303916-001	EN1303916-002	EN1303916-003	EN1303916-004	EN1303916-005
EA055: Moisture Content								
Moisture Content (dried @ 103°C)		1.0	%	2.7	3.4	2.8	9.0	11.8
EA200: AS 4964 - 2004 Identification of	of Asbestos in bulk	samples						
Asbestos Detected	1332-21-4	0.1	g/kg	No	No	No	No	No
Asbestos Type	1332-21-4	1		-	-	-	-	-
Sample weight (dry)		0.01	g	27.6	31.8	23.1	23.8	22.6
APPROVED IDENTIFIER:		1		C.OWLER	C.OWLER	C.OWLER	C.OWLER	C.OWLER
EA200Q: Asbestos Quantification (no	n-NATA)							
Weight Used for % Calculation		0.0001	kg	0.0276	0.0318	0.0231	0.0238	0.0226
Asbestos Containing Material	1332-21-4	0.1	g	<0.1	<0.1	<0.1	<0.1	<0.1
Fibrous Asbestos		0.002	g	<0.002	<0.002	<0.002	<0.002	<0.002
Asbestos Containing Material (as 15% Asbestos in ACM >7mm)	1332-21-4	0.01	%	<0.06	<0.05	<0.07	<0.07	<0.07
Asbestos Fines and Fibrous Asbestos (<7mm)	1332-21-4	0.001	%	<0.008	<0.007	<0.009	<0.009	<0.009
Trace Asbestos Detected		5	Fibres	No	No	No	No	No
EP075(SIM)B: Polynuclear Aromatic H	lydrocarbons							
Naphthalene	91-20-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Acenaphthene	83-32-9	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Fluorene	86-73-7	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Phenanthrene	85-01-8	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Anthracene	120-12-7	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Fluoranthene	206-44-0	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Pyrene	129-00-0	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Chrysene	218-01-9	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(b)fluoranthene	205-99-2	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Sum of polycyclic aromatic hydrocarbons	s	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ (zero)		0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5

Sub-Matrix: SOIL (Matrix: SOIL)		Cli	ent sample ID	RES 3 - S2	RES 3 - S3	RES 3 - QA1	RES 3 - S4	RES 3 - S1
	Cl	ient sampli	ing date / time	22-OCT-2013 15:00				
Compound	CAS Number	LOR	Unit	EN1303916-001	EN1303916-002	EN1303916-003	EN1303916-004	EN1303916-005
EP075(SIM)B: Polynuclear Aromatic H	Hydrocarbons - Cont	inued						
Benzo(a)pyrene TEQ (half LOR)		0.5	mg/kg	0.6	0.6	0.6	0.6	0.6
[∿] Benzo(a)pyrene TEQ (LOR)		0.5	mg/kg	1.2	1.2	1.2	1.2	1.2
EP080/071: Total Petroleum Hydrocar	bons							
C6 - C9 Fraction		10	mg/kg	<10	<10	<10	<10	<10
C10 - C14 Fraction		50	mg/kg	<50	<50	<50	150	80
C15 - C28 Fraction		100	mg/kg	600	240	<100	670	450
C29 - C36 Fraction		100	mg/kg	1080	150	<100	780	520
C10 - C36 Fraction (sum)		50	mg/kg	1680	390	<50	1600	1050
EP080/071: Total Recoverable Hydroc	arbons - NEPM 201	3						
C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10	<10	<10	<10
C6 - C10 Fraction minus BTEX (F1)	C6_C10-BTEX	10	mg/kg	<10	<10	<10	<10	<10
>C10 - C16 Fraction	>C10_C16	50	mg/kg	<50	60	<50	160	100
>C16 - C34 Fraction		100	mg/kg	1390	320	<100	1150	760
>C34 - C40 Fraction		100	mg/kg	660	<100	<100	560	350
>C10 - C40 Fraction (sum)		50	mg/kg	2050	380	<50	1870	1210
>C10 - C16 Fraction minus Naphthalene (F2)		50	mg/kg	<50	60	<50	160	100
EP080: BTEXN								
Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Sum of BTEX		0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Total Xylenes	1330-20-7	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Naphthalene	91-20-3	1	mg/kg	<1	<1	<1	<1	<1
EP075(SIM)S: Phenolic Compound Su	urrogates							
Phenol-d6	13127-88-3	0.1	%	82.6	85.2	82.7	85.8	84.5
2-Chlorophenol-D4	93951-73-6	0.1	%	81.6	85.8	87.3	92.5	89.5
2.4.6-Tribromophenol	118-79-6	0.1	%	113	109	90.0	104	87.0
EP075(SIM)T: PAH Surrogates								
2-Fluorobiphenyl	321-60-8	0.1	%	98.3	95.2	89.0	99.7	96.5
Anthracene-d10	1719-06-8	0.1	%	80.6	85.6	85.5	78.8	79.9

Page	5 of 18
Work Order	: EN1303916 Amendment 1
Client	: ENVIRON
Project	AS130348

Client sample ID			RES 3 - S2	RES 3 - S3	RES 3 - QA1	RES 3 - S4	RES 3 - S1
Cl	ient samplii	ng date / time	22-OCT-2013 15:00	22-OCT-2013 15:00	22-OCT-2013 15:00	22-OCT-2013 15:00	22-OCT-2013 15:00
CAS Number	LOR	Unit	EN1303916-001	EN1303916-002	EN1303916-003	EN1303916-004	EN1303916-005
1718-51-0	0.1	%	98.3	97.8	86.1	81.8	86.1
17060-07-0	0.1	%	120	105	104	106	105
2037-26-5	0.1	%	114	71.2	81.2	80.9	82.2
460-00-4	0.1	%	111	89.8	92.9	96.0	100
	CAS Number 1718-51-0 17060-07-0 2037-26-5	Client sampli CAS Number LOR 1718-51-0 0.1 17060-07-0 0.1 2037-26-5 0.1	Client sampling date / time CAS Number LOR Unit 1718-51-0 0.1 % 17060-07-0 0.1 % 2037-26-5 0.1 %	Client sampling date / time 22-OCT-2013 15:00 CAS Number LOR Unit EN1303916-001 T1718-51-0 0.1 % 98.3 17060-07-0 0.1 % 120 2037-26-5 0.1 % 114	Client sampling date / time 22-OCT-2013 15:00 22-OCT-2013 15:00 CAS Number LOR Unit EN1303916-001 EN1303916-002 T1718-51-0 0.1 % 98.3 97.8 17060-07-0 0.1 % 120 105 2037-26-5 0.1 % 114 71.2	Client sampling date / time 22-OCT-2013 15:00 22-OCT-2013 15:00 22-OCT-2013 15:00 CAS Number LOR Unit EN1303916-001 EN1303916-002 EN1303916-003 CAS Number LOR Unit EN1303916-001 EN1303916-002 EN1303916-003 1718-51-0 0.1 % 98.3 97.8 86.1 17060-07-0 0.1 % 120 105 104 2037-26-5 0.1 % 114 71.2 81.2	Client sampling date / time 22-OCT-2013 15:00 22-OCT-2013 15:00 22-OCT-2013 15:00 22-OCT-2013 15:00 22-OCT-2013 15:00 EN1303916-004 CAS Number LOR Unit EN1303916-001 EN1303916-002 EN1303916-003 EN1303916-004 1718-51-0 0.1 % 98.3 97.8 86.1 81.8 17060-07-0 0.1 % 120 105 104 106 2037-26-5 0.1 % 114 71.2 81.2 80.9

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	RES 3 - S6	RES 3 - S7	RES 3 - S9	RES 3 - S8	RES 3 - S10
	C	lient samplii	ng date / time	22-OCT-2013 15:00				
Compound	CAS Number	LOR	Unit	EN1303916-006	EN1303916-007	EN1303916-008	EN1303916-009	EN1303916-010
EA055: Moisture Content								
Moisture Content (dried @ 103°C)		1.0	%	2.6	4.4	1.4	4.6	5.9
EA200: AS 4964 - 2004 Identification of	of Asbestos in bulk	samples						
Asbestos Detected	1332-21-4	0.1	g/kg	No	No	No	No	No
Asbestos Type	1332-21-4	1		-	-	-	-	-
Sample weight (dry)		0.01	g	36.3	25.4	29.1	28.7	28.6
APPROVED IDENTIFIER:		1		C.OWLER	C.OWLER	C.OWLER	C.OWLER	C.OWLER
EA200Q: Asbestos Quantification (no	n-NATA)							
Weight Used for % Calculation		0.0001	kg	0.0363	0.0254	0.0291	0.0287	0.0286
Asbestos Containing Material	1332-21-4	0.1	g	<0.1	<0.1	<0.1	<0.1	<0.1
Fibrous Asbestos		0.002	g	<0.002	<0.002	<0.002	<0.002	<0.002
Asbestos Containing Material (as 15% Asbestos in ACM >7mm)	1332-21-4	0.01	%	<0.05	<0.06	<0.06	<0.06	<0.06
Asbestos Fines and Fibrous Asbestos (<7mm)	1332-21-4	0.001	%	<0.006	<0.008	<0.007	<0.007	<0.007
Trace Asbestos Detected		5	Fibres	No	No	No	No	No
EP075(SIM)B: Polynuclear Aromatic H	lydrocarbons							
Naphthalene	91-20-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Acenaphthene	83-32-9	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Fluorene	86-73-7	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Phenanthrene	85-01-8	0.5	mg/kg	<0.5	0.8	<0.5	0.6	<0.5
Anthracene	120-12-7	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Fluoranthene	206-44-0	0.5	mg/kg	<0.5	1.0	<0.5	0.6	<0.5
Pyrene	129-00-0	0.5	mg/kg	<0.5	0.9	<0.5	<0.5	<0.5
Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Chrysene	218-01-9	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(b)fluoranthene	205-99-2	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Sum of polycyclic aromatic hydrocarbons	5	0.5	mg/kg	<0.5	2.7	<0.5	1.2	<0.5
Benzo(a)pyrene TEQ (zero)		0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5

Page	: 7 of 18
Work Order	: EN1303916 Amendment 1
Client	: ENVIRON
Project	AS130348

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	RES 3 - S6	RES 3 - S7	RES 3 - S9	RES 3 - S8	RES 3 - S10
	Cl	ient sampli	ng date / time	22-OCT-2013 15:00				
Compound	CAS Number	LOR	Unit	EN1303916-006	EN1303916-007	EN1303916-008	EN1303916-009	EN1303916-010
EP075(SIM)B: Polynuclear Aromatic H	lydrocarbons - Cont	inued						
Benzo(a)pyrene TEQ (half LOR)		0.5	mg/kg	0.6	0.6	0.6	0.6	0.6
Benzo(a)pyrene TEQ (LOR)		0.5	mg/kg	1.2	1.2	1.2	1.2	1.2
EP080/071: Total Petroleum Hydrocar	bons							
C6 - C9 Fraction		10	mg/kg	<10	<10	<10	<10	<10
C10 - C14 Fraction		50	mg/kg	80	<50	50	<50	70
C15 - C28 Fraction		100	mg/kg	520	220	240	150	410
C29 - C36 Fraction		100	mg/kg	550	180	190	110	240
C10 - C36 Fraction (sum)		50	mg/kg	1150	400	480	260	720
EP080/071: Total Recoverable Hydrod	arbons - <u>NEPM 201</u>	3						
C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10	<10	<10	<10
C6 - C10 Fraction minus BTEX (F1)	C6_C10-BTEX	10	mg/kg	<10	<10	<10	<10	<10
>C10 - C16 Fraction	>C10_C16	50	mg/kg	120	<50	80	<50	110
>C16 - C34 Fraction		100	mg/kg	830	320	330	200	520
>C34 - C40 Fraction		100	mg/kg	500	110	140	<100	170
>C10 - C40 Fraction (sum)		50	mg/kg	1450	430	550	200	800
>C10 - C16 Fraction minus Naphthalene (F2)		50	mg/kg	120	<50	80	<50	110
EP080: BTEXN								
Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Sum of BTEX		0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
∖ Total Xylenes	1330-20-7	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Naphthalene	91-20-3	1	mg/kg	<1	<1	<1	<1	<1
EP075(SIM)S: Phenolic Compound Su	urrogates							
Phenol-d6	13127-88-3	0.1	%	93.8	88.0	85.2	88.5	82.6
2-Chlorophenol-D4	93951-73-6	0.1	%	95.5	95.4	82.6	83.5	93.0
2.4.6-Tribromophenol	118-79-6	0.1	%	96.9	94.3	81.3	106	103
EP075(SIM)T: PAH Surrogates								
2-Fluorobiphenyl	321-60-8	0.1	%	111	89.8	91.6	90.9	94.8
Anthracene-d10	1719-06-8	0.1	%	85.0	81.0	72.6	80.8	81.4

Page	: 8 of 18
Work Order	: EN1303916 Amendment 1
Client	: ENVIRON
Project	AS130348

Client sample ID Client sampling date / time			RES 3 - S6	RES 3 - S7	RES 3 - S9	RES 3 - S8	RES 3 - S10
			22-OCT-2013 15:00	22-OCT-2013 15:00	22-OCT-2013 15:00	22-OCT-2013 15:00	22-OCT-2013 15:00
CAS Number	LOR	Unit	EN1303916-006	EN1303916-007	EN1303916-008	EN1303916-009	EN1303916-010
1718-51-0	0.1	%	79.8	94.4	84.6	81.7	85.1
17060-07-0	0.1	%	109	96.6	108	96.8	80.5
2037-26-5	0.1	%	92.9	73.6	94.6	76.2	56.0
460-00-4	0.1	%	102	82.5	110	91.8	74.0
	CAS Number 1718-51-0 17060-07-0 2037-26-5	Client sampli CAS Number LOR 1718-51-0 0.1 17060-07-0 0.1 2037-26-5 0.1	Client sampling date / time CAS Number LOR Unit 1718-51-0 0.1 % 17060-07-0 0.1 % 2037-26-5 0.1 %	Client sampling date / time 22-OCT-2013 15:00 CAS Number LOR Unit EN1303916-006 T1718-51-0 0.1 % 79.8 17060-07-0 0.1 % 109 2037-26-5 0.1 % 92.9	Client sampling date / time 22-OCT-2013 15:00 22-OCT-2013 15:00 CAS Number LOR Unit EN1303916-006 EN1303916-007 CAS Number LOR Unit Final State Stat	Client sampling date / time 22-OCT-2013 15:00 22-OCT-2013 15:00 22-OCT-2013 15:00 CAS Number LOR Unit EN1303916-006 EN1303916-007 EN1303916-008 CAS Number LOR Unit EN1303916-006 EN1303916-007 EN1303916-008 1718-51-0 0.1 % 79.8 94.4 84.6 17060-07-0 0.1 % 109 96.6 108 2037-26-5 0.1 % 92.9 73.6 94.6	Client sampling date / time 22-OCT-2013 15:00 22-OCT-2013 15:00 22-OCT-2013 15:00 22-OCT-2013 15:00 22-OCT-2013 15:00 CAS Number LOR Unit EN1303916-006 EN1303916-007 EN1303916-008 EN1303916-009 1718-51-0 0.1 % 79.8 94.4 84.6 81.7 17060-07-0 0.1 % 109 96.6 108 96.8 2037-26-5 0.1 % 92.9 73.6 94.6 76.2

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	RES 3 - S5	RES 3 - SF11	RES 3 - SF12	RES 3 - SF13	RES 3 - SF14
	C	Client sampling date / time		22-OCT-2013 15:00				
Compound	CAS Number	LOR	Unit	EN1303916-011	EN1303916-012	EN1303916-013	EN1303916-014	EN1303916-015
EA055: Moisture Content								
Moisture Content (dried @ 103°C)		1.0	%	2.5	5.8	7.6	2.9	7.6
EA200: AS 4964 - 2004 Identification of	of Asbestos in bulk	samples						
Asbestos Detected	1332-21-4	0.1	g/kg	No				
Asbestos Type	1332-21-4	1		-				
Sample weight (dry)		0.01	g	26.7				
APPROVED IDENTIFIER:		1		C.OWLER				
EA200Q: Asbestos Quantification (no	n-NATA)							
Weight Used for % Calculation		0.0001	kg	0.0267				
Asbestos Containing Material	1332-21-4	0.1	g	<0.1				
Fibrous Asbestos		0.002	g	<0.002				
Asbestos Containing Material (as 15% Asbestos in ACM >7mm)	1332-21-4	0.01	%	<0.06				
Asbestos Fines and Fibrous Asbestos (<7mm)	1332-21-4	0.001	%	<0.008				
Trace Asbestos Detected		5	Fibres	No				
EK040S: Fluoride Soluble								
Fluoride	16984-48-8	1	mg/kg		2	2	4	2
EP075(SIM)B: Polynuclear Aromatic F	lydrocarbons							
Naphthalene	91-20-3	0.5	mg/kg	<0.5				
Acenaphthylene	208-96-8	0.5	mg/kg	<0.5				
Acenaphthene	83-32-9	0.5	mg/kg	<0.5				
Fluorene	86-73-7	0.5	mg/kg	<0.5				
Phenanthrene	85-01-8	0.5	mg/kg	<0.5				
Anthracene	120-12-7	0.5	mg/kg	<0.5				
Fluoranthene	206-44-0	0.5	mg/kg	<0.5				
Pyrene	129-00-0	0.5	mg/kg	<0.5				
Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5				
Chrysene	218-01-9	0.5	mg/kg	<0.5				
Benzo(b)fluoranthene	205-99-2	0.5	mg/kg	<0.5				
Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5				
Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5				
Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5				
Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5				
Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5				

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	RES 3 - S5	RES 3 - SF11	RES 3 - SF12	RES 3 - SF13	RES 3 - SF14
	Cl	ient sampli	ng date / time	22-OCT-2013 15:00				
Compound	CAS Number	LOR	Unit	EN1303916-011	EN1303916-012	EN1303916-013	EN1303916-014	EN1303916-015
EP075(SIM)B: Polynuclear Aromatic H	ydrocarbons - Con	tinued						
Sum of polycyclic aromatic hydrocarbons		0.5	mg/kg	<0.5				
^ Benzo(a)pyrene TEQ (zero)		0.5	mg/kg	<0.5				
Senzo(a)pyrene TEQ (half LOR)		0.5	mg/kg	0.6				
Senzo(a)pyrene TEQ (LOR)		0.5	mg/kg	1.2				
EP080/071: Total Petroleum Hydrocart	bons							
C6 - C9 Fraction		10	mg/kg	<10				
C10 - C14 Fraction		50	mg/kg	<50				
C15 - C28 Fraction		100	mg/kg	<100				
C29 - C36 Fraction		100	mg/kg	<100				
[^] C10 - C36 Fraction (sum)		50	mg/kg	<50				
EP080/071: Total Recoverable Hydroca	arbons - NEPM 201	3						
C6 - C10 Fraction	C6_C10	10	mg/kg	<10				
[^] C6 - C10 Fraction minus BTEX	C6_C10-BTEX	10	mg/kg	<10				
(F1)								
>C10 - C16 Fraction	>C10_C16	50	mg/kg	<50				
>C16 - C34 Fraction		100	mg/kg	<100				
>C34 - C40 Fraction		100	mg/kg	<100				
^ >C10 - C40 Fraction (sum)		50	mg/kg	<50				
C10 - C16 Fraction minus Naphthalene		50	mg/kg	<50				
(F2)								
EP080: BTEXN		0.0		-0.0				
Benzene	71-43-2	0.2	mg/kg	<0.2				
Toluene	108-88-3	0.5	mg/kg					
Ethylbenzene	100-41-4	0.5	mg/kg	<0.5				
meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg	<0.5				
ortho-Xylene	95-47-6	0.5	mg/kg	<0.5				
Sum of BTEX		0.2	mg/kg	<0.2				
Total Xylenes	1330-20-7	0.5	mg/kg	<0.5				
Naphthalene	91-20-3	1	mg/kg	<1				
EP075(SIM)S: Phenolic Compound Su	_	0.4	0/					
Phenol-d6	13127-88-3	0.1	%	86.0				
2-Chlorophenol-D4	93951-73-6	0.1	%	82.8				
2.4.6-Tribromophenol	118-79-6	0.1	%	95.6				
EP075(SIM)T: PAH Surrogates								

Page	: 11 of 18
Work Order	: EN1303916 Amendment 1
Client	ENVIRON
Project	AS130348

Sub-Matrix: SOIL (Matrix: SOIL) Client sample ID		RES 3 - S5	RES 3 - SF11	RES 3 - SF12	RES 3 - SF13	RES 3 - SF14		
	Cli	ent sampli	ng date / time	22-OCT-2013 15:00				
Compound	CAS Number	LOR	Unit	EN1303916-011	EN1303916-012	EN1303916-013	EN1303916-014	EN1303916-015
EP075(SIM)T: PAH Surrogates - Con	tinued							
2-Fluorobiphenyl	321-60-8	0.1	%	95.0				
Anthracene-d10	1719-06-8	0.1	%	74.8				
4-Terphenyl-d14	1718-51-0	0.1	%	90.1				
EP080S: TPH(V)/BTEX Surrogates								
1.2-Dichloroethane-D4	17060-07-0	0.1	%	110				
Toluene-D8	2037-26-5	0.1	%	110				
4-Bromofluorobenzene	460-00-4	0.1	%	111				

Page	: 12 of 18
Work Order	: EN1303916 Amendment 1
Client	: ENVIRON
Project	: AS130348

	Clie	ent sample ID	RES 3 - SF15	RES 3 - SF16	RES 3 - SF17	RES 3 - SF18	RES 3 - SF19
Cl	lient sampli	ng date / time	22-OCT-2013 15:00	22-OCT-2013 15:00	22-OCT-2013 15:00	22-OCT-2013 15:00	22-OCT-2013 15:00
CAS Number	LOR	Unit	EN1303916-016	EN1303916-017	EN1303916-018	EN1303916-019	EN1303916-020
	1.0	%	5.4	9.5	9.9	7.9	6.3
16984-48-8	1	mg/kg	2	2	2	1	2
ĺ	CAS Number	Client sampli CAS Number LOR 1.0	1.0 %	Client sampling date / time 22-OCT-2013 15:00 CAS Number LOR Unit EN1303916-016 1.0 % 5.4	Client sampling date / time 22-OCT-2013 15:00 22-OCT-2013 15:00 CAS Number LOR Unit EN1303916-016 EN1303916-017 1.0 % 5.4 9.5	Client sampling date / time 22-OCT-2013 15:00 22-OCT-2013 15:00 22-OCT-2013 15:00 CAS Number LOR Unit EN1303916-016 EN1303916-017 EN1303916-018 1.0 % 5.4 9.5 9.9	Client sampling date / time 22-OCT-2013 15:00 22-OCT-2013 15:00<

Page	: 13 of 18
Work Order	: EN1303916 Amendment 1
Client	: ENVIRON
Project	AS130348

	Clie	ent sample ID	RES 3 - SF20	RES 3 - SF21	RES 3 - SF22	RES 3 - SF23	RES 3 - SF24
Ci	lient sampli	ng date / time	22-OCT-2013 15:00	22-OCT-2013 15:00	22-OCT-2013 15:00	22-OCT-2013 15:00	22-OCT-2013 15:00
CAS Number	LOR	Unit	EN1303916-021	EN1303916-022	EN1303916-023	EN1303916-024	EN1303916-025
	1.0	%	7.4	7.8	8.2	4.7	6.1
16984-48-8	1	mg/kg	2	2	2	1	2
	CAS Number	Client sampli CAS Number LOR 1.0	1.0 %	Client sampling date / time 22-OCT-2013 15:00 CAS Number LOR Unit EN1303916-021 1.0 % 7.4	Client sampling date / time 22-OCT-2013 15:00 22-OCT-2013 15:00 CAS Number LOR Unit EN1303916-021 EN1303916-022 1.0 % 7.4 7.8	Client sampling date / time 22-OCT-2013 15:00 22-OCT-2013 15:00 22-OCT-2013 15:00 CAS Number LOR Unit EN1303916-021 EN1303916-022 EN1303916-023 1.0 % 7.4 7.8 8.2	Client sampling date / time 22-OCT-2013 15:00 22-OCT-2013 15:00<

Page	: 14 of 18
Work Order	: EN1303916 Amendment 1
Client	ENVIRON
Project	: AS130348

Sub-Matrix: SOIL (Matrix: SOIL)	Client sample ID			RES 3 - SF25	RES 3 - SF26	RES 3 - SF27	RES 3 - SF28	RES 3 - SF29
	Cli	ent sampli	ng date / time	22-OCT-2013 15:00				
Compound	CAS Number	LOR	Unit	EN1303916-026	EN1303916-027	EN1303916-028	EN1303916-029	EN1303916-030
EA055: Moisture Content								
Moisture Content (dried @ 103°C)		1.0	%	5.8	1.8	15.4	2.8	<1.0
EK040S: Fluoride Soluble								
Fluoride	16984-48-8	1	mg/kg	2	2	2	3	<1

Page	15 of 18
Work Order	: EN1303916 Amendment 1
Client	: ENVIRON
Project	AS130348

Client sample ID			RES 3 - SF30	RES 3 - SF31	RES 3 - SF32	RES 3 - SF33	RES 3 - SF34
CI	ient sampli	ng date / time	22-OCT-2013 15:00	22-OCT-2013 15:00	22-OCT-2013 15:00	22-OCT-2013 15:00	22-OCT-2013 15:00
CAS Number	LOR	Unit	EN1303916-031	EN1303916-032	EN1303916-033	EN1303916-034	EN1303916-035
	1.0	%	3.0	2.9	4.1	1.9	1.5
16984-48-8	1	mg/kg	3	<1	1	1	<1
	CAS Number	Client sampli CAS Number LOR 1.0	Client sampling date / time CAS Number LOR Unit 1.0 %	Client sampling date / time 22-OCT-2013 15:00 CAS Number LOR Unit EN1303916-031 1.0 % 3.0	Client sampling date / time 22-OCT-2013 15:00 22-OCT-2013 15:00 CAS Number LOR Unit EN1303916-031 EN1303916-032 1.0 % 3.0 2.9	Client sampling date / time 22-OCT-2013 15:00 22-OCT-2013 15:00 22-OCT-2013 15:00 CAS Number LOR Unit EN1303916-031 EN1303916-032 EN1303916-033 1.0 % 3.0 2.9 4.1	Client sampling date / time 22-OCT-2013 15:00 22-OCT-2013 15:00<

Page	: 16 of 18
Work Order	: EN1303916 Amendment 1
Client	: ENVIRON
Project	AS130348

Sub-Matrix: SOIL (Matrix: SOIL)	Client sample ID			RES 3 - SF35	RES 3 - SF36	RES 3 - SF37	RES 3 - SF38	RES 3 - QA2
	Cl	ient sampli	ing date / time	22-OCT-2013 15:00				
Compound	CAS Number	LOR	Unit	EN1303916-036	EN1303916-037	EN1303916-038	EN1303916-039	EN1303916-040
EA055: Moisture Content								
Moisture Content (dried @ 103°C)		1.0	%	1.3	3.3	6.0	9.6	7.4
EK040S: Fluoride Soluble								
Fluoride	16984-48-8	1	mg/kg	2	2	2	2	1

Sub-Matrix: SOIL (Matrix: SOIL)	Client sample ID			RES 3 - QA3	RES 3 - QA4	 	
Client sampling date / time			22-OCT-2013 15:00	22-OCT-2013 15:00	 		
Compound	CAS Number	LOR	Unit	EN1303916-041	EN1303916-042	 	
EA055: Moisture Content							
Moisture Content (dried @ 103°C)		1.0	%	3.9	14.4	 	
EK040S: Fluoride Soluble							
Fluoride	16984-48-8	1	mg/kg	2	2	 	

Analytical Results

Descriptive Results

Sub-Matrix: SOIL		
Method: Compound	Client sample ID - Client sampling date / time	Analytical Results
EA200: AS 4964 - 2004 Identificatio	n of Asbestos in bulk samples	
EA200: Description	RES 3 - S2 - 22-OCT-2013 15:00	Dark grey soil with dark grey rocks plus plenty of slag pieces and vegetation.
EA200: Description	RES 3 - S3 - 22-OCT-2013 15:00	Dark grey - brown soil with plenty of slag and charcoal pieces plus plenty of vegetation.
EA200: Description	RES 3 - QA1 - 22-OCT-2013 15:00	Dark grey soil with dark grey rocks plus plenty of slag pieces and vegetation.
EA200: Description	RES 3 - S4 - 22-OCT-2013 15:00	Dark grey - brown soil with plenty of slag and charcoal pieces plus plenty of vegetation.
EA200: Description	RES 3 - S1 - 22-OCT-2013 15:00	Dark grey - brown soil with plenty of slag and charcoal pieces plus plenty of vegetation.
EA200: Description	RES 3 - S6 - 22-OCT-2013 15:00	Dark grey soil with dark grey rocks plus plenty of slag pieces and vegetation.
EA200: Description	RES 3 - S7 - 22-OCT-2013 15:00	Dark grey soil with dark grey rocks plus plenty of slag pieces and vegetation.
EA200: Description	RES 3 - S9 - 22-OCT-2013 15:00	Dark grey soil with dark grey rocks plus plenty of slag pieces and vegetation.
EA200: Description	RES 3 - S8 - 22-OCT-2013 15:00	Dark grey soil with dark grey rocks plus plenty of slag pieces and vegetation.
EA200: Description	RES 3 - S10 - 22-OCT-2013 15:00	Dark grey soil with dark grey rocks plus plenty of slag pieces and vegetation.
EA200: Description	RES 3 - S5 - 22-OCT-2013 15:00	Dark grey soil with dark grey rocks plus plenty of slag pieces and vegetation.

Page	: 18 of 18
Work Order	: EN1303916 Amendment 1
Client	: ENVIRON
Project	: AS130348

Surrogate Control Limits

Sub-Matrix: SOIL		Recover	y Limits (%)
Compound	CAS Number	Low	High
EP075(SIM)S: Phenolic Compound	Surrogates		
Phenol-d6	13127-88-3	63	123
2-Chlorophenol-D4	93951-73-6	66	122
2.4.6-Tribromophenol	118-79-6	40	138
EP075(SIM)T: PAH Surrogates			
2-Fluorobiphenyl	321-60-8	70	122
Anthracene-d10	1719-06-8	66	128
4-Terphenyl-d14	1718-51-0	65	129
EP080S: TPH(V)/BTEX Surrogates			
1.2-Dichloroethane-D4	17060-07-0	72.8	133.2
Toluene-D8	2037-26-5	73.9	132.1
4-Bromofluorobenzene	460-00-4	71.6	130.0

QUALITY CONTROL REPORT

Work Order Amendment	: EN1303916 : 1	Page	: 1 of 9			
Client	ENVIRON	Laboratory	: Environmental Division Newcastle			
Contact	: MR STEVE CADMAN	Contact	: Peter Keyte			
Address	: PO Box 435 THE JUNCTION NSW 2291	Address	: 5/585 Maitland Road Mayfield West NSW Australia 2304			
E-mail	: scadman@environcorp.com	E-mail	: peter.keyte@als.com.au			
Telephone	:	Telephone	: 61-2-4968-9433			
Facsimile	:	Facsimile	: +61-2-4968 0349			
Project	: AS130348	QC Level	: NEPM 2013 Schedule B(3) and ALS QCS3 requirement			
Site	:					
C-O-C number	: 155061-64	Date Samples Received	: 24-OCT-2013			
Sampler	: SC	Issue Date	: 19-FEB-2014			
Order number	:					
		No. of samples received	: 42			
Quote number	: SY/433/13	No. of samples analysed	: 42			

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Address 5/585 Maitland Road Mayfield West NSW Australia 2304 | PHONE +61 2 4014 2500 | Facsimile +61 2 4968 0349 Environmental Division Newcastle ABN 84 009 936 029 Part of the ALS Group An ALS Limited Company

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

Page	: 2 of 9
Work Order	: EN1303916 Amendment 1
Client	: ENVIRON
Project	: AS130348

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Key : Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. LOR = Limit of reporting RPD = Relative Percentage Difference # = Indicates failed QC

NATA Accredited Signatories

Laboratory 825 This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

	Position	Accreditation Category	
compliance with ISO/IEC 17025. Ashesh Patel	Inorganic Chemist	Sydney Inorganics	
Celine Conceicao	Senior Spectroscopist	Sydney Inorganics	
Christopher Owler	Team Leader - Asbestos	Newcastle - Asbestos	
Pabi Subba	Senior Organic Chemist	Sydney Organics	
Sanjeshni Jyoti Mala	Senior Chemist Volatile	Sydney Organics	
Wisam Marassa	Inorganics Coordinator	Sydney Inorganics	

Page	: 3 of 9
Work Order	: EN1303916 Amendment 1
Client	: ENVIRON
Project	: AS130348

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR:-No Limit; Result between 10 and 20 times LOR:-0% - 50%; Result > 20 times LOR:-0% - 20%.

Sub-Matrix: SOIL				Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%	
A055: Moisture Co	ntent (QC Lot: 3128857)									
EN1303916-003	RES 3 - QA1	EA055-103: Moisture Content (dried @ 103°C)		1.0	%	2.8	2.4	17.1	No Limit	
ES1322916-003	Anonymous	EA055-103: Moisture Content (dried @ 103°C)		1.0	%	68.6	69.6	1.4	0% - 20%	
A055: Moisture Co	ntent (QC Lot: 3149662)									
EB1327056-036	Anonymous	EA055-103: Moisture Content (dried @ 103°C)		1.0	%	29.8	28.2	5.2	0% - 20%	
B1327056-054	Anonymous	EA055-103: Moisture Content (dried @ 103°C)		1.0	%	35.2	37.2	5.7	0% - 20%	
A055: Moisture Co	ntent (QC Lot: 3149663)									
EN1303916-017	RES 3 - SF16	EA055-103: Moisture Content (dried @ 103°C)		1.0	%	9.5	9.5	0.0	No Limit	
EN1303916-028	RES 3 - SF27	EA055-103: Moisture Content (dried @ 103°C)		1.0	%	15.4	17.2	11.3	0% - 50%	
A055: Moisture Co	ntent (QC Lot: 3149664)									
EN1303916-037	RES 3 - SF36	EA055-103: Moisture Content (dried @ 103°C)		1.0	%	3.3	3.8	15.7	No Limit	
ES1323865-006	Anonymous	EA055-103: Moisture Content (dried @ 103°C)		1.0	%	5.6	4.8	14.6	No Limit	
	oluble (QC Lot: 3148949				,,,					
EN1303916-012	RES 3 - SF11	EK040S: Fluoride	16984-48-8	1	mg/kg	2	2	0.0	No Limit	
EN1303916-021	RES 3 - SF20	EK040S: Fluoride	16984-48-8	1	mg/kg	2	2	0.0	No Limit	
			10304-40-0	1	mg/kg	2	2	0.0	NO LIIIII	
	oluble (QC Lot: 3148950		10001 10 0			-1		0.0	No. 1 Section	
EN1303916-032	RES 3 - SF31	EK040S: Fluoride	16984-48-8	1	mg/kg	<1	<1	0.0	No Limit	
EN1303916-041	RES 3 - QA3	EK040S: Fluoride	16984-48-8	1	mg/kg	2	2	0.0	No Limit	
		arbons (QC Lot: 3128346)								
EN1303916-001	RES 3 - S2	EP075(SIM): Naphthalene	91-20-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit	
		EP075(SIM): Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit	
		EP075(SIM): Acenaphthene	83-32-9	0.5	mg/kg	<0.5	<0.5	0.0	No Limit	
		EP075(SIM): Fluorene	86-73-7	0.5	mg/kg	<0.5	<0.5	0.0	No Limit	
		EP075(SIM): Phenanthrene	85-01-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit	
		EP075(SIM): Anthracene	120-12-7	0.5	mg/kg	<0.5	<0.5	0.0	No Limit	
		EP075(SIM): Fluoranthene	206-44-0	0.5	mg/kg	<0.5	<0.5	0.0	No Limit	
		EP075(SIM): Pyrene	129-00-0	0.5	mg/kg	<0.5	<0.5	0.0	No Limit	
		EP075(SIM): Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	0.5	0.0	No Limit	
		EP075(SIM): Chrysene	218-01-9	0.5	mg/kg	<0.5	<0.5	0.0	No Limit	
		EP075(SIM): Benzo(b)fluoranthene	205-99-2	0.5	mg/kg	<0.5	<0.5	0.0	No Limit	
		EP075(SIM): Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	<0.5	0.0	No Limit	
		EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit	
		EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	<0.5	0.0	No Limit	
		EP075(SIM): Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit	
		EP075(SIM): Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	<0.5	0.0	No Limit	

Page	: 4 of 9
Work Order	: EN1303916 Amendment 1
Client	: ENVIRON
Project	· AS130348

Sub-Matrix: SOIL						Laboratory I	Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EP075(SIM)B: Polyn	uclear Aromatic Hydro	carbons (QC Lot: 3128346) - continued							
EN1303916-001	RES 3 - S2	EP075(SIM): Sum of polycyclic aromatic		0.5	mg/kg	<0.5	0.5	0.0	No Limit
		hydrocarbons							
		EP075(SIM): Benzo(a)pyrene TEQ (zero)		0.5	mg/kg	<0.5	<0.5	0.0	No Limit
EN1303916-011	RES 3 - S5	EP075(SIM): Naphthalene	91-20-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Acenaphthene	83-32-9	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Fluorene	86-73-7	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Phenanthrene	85-01-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Anthracene	120-12-7	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Fluoranthene	206-44-0	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Pyrene	129-00-0	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Chrysene	218-01-9	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
	EP075(SIM): Benzo(b)fluoranthene	205-99-2	0.5	mg/kg	<0.5	<0.5	0.0	No Limit	
	EP075(SIM): Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	<0.5	0.0	No Limit	
	EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit	
	EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	<0.5	0.0	No Limit	
		EP075(SIM): Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Sum of polycyclic aromatic		0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		hydrocarbons							
		EP075(SIM): Benzo(a)pyrene TEQ (zero)		0.5	mg/kg	<0.5	<0.5	0.0	No Limit
EP080/071: Total Pe	troleum Hydrocarbons	(QC Lot: 3126366)							
EN1303916-001	RES 3 - S2	EP080: C6 - C9 Fraction		10	mg/kg	<10	<10	0.0	No Limit
EN1303916-011	RES 3 - S5	EP080: C6 - C9 Fraction		10	mg/kg	<10	<10	0.0	No Limit
EP080/071: Total Pe	troleum Hydrocarbons	(QC Lot: 3128345)							
EN1303916-001	RES 3 - S2	EP071: C15 - C28 Fraction		100	mg/kg	600	620	3.3	No Limit
		EP071: C29 - C36 Fraction		100	mg/kg	1080	1130	4.1	0% - 50%
		EP071: C10 - C14 Fraction		50	mg/kg	<50	<50	0.0	No Limit
EN1303916-011	RES 3 - S5	EP071: C15 - C28 Fraction		100	mg/kg	<100	<100	0.0	No Limit
		EP071: C29 - C36 Fraction		100	mg/kg	<100	<100	0.0	No Limit
		EP071: C10 - C14 Fraction		50	mg/kg	<50	<50	0.0	No Limit
EP080/071: Total Re	coverable Hydrocarbo	ns - NEPM 2013 (QC Lot: 3126366)							
EN1303916-001	RES 3 - S2	EP080: C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10	0.0	No Limit
EN1303916-011	RES 3 - S5	EP080: C6 - C10 Fraction	 C6_C10	10	mg/kg	<10	<10	0.0	No Limit
EP080/071: Total Re	coverable Hvdrocarbo	ns - NEPM 2013 (QC Lot: 3128345)	_						
EN1303916-001	RES 3 - S2	EP071: >C16 - C34 Fraction		100	mg/kg	1390	1430	3.0	0% - 50%
		EP071: >C34 - C40 Fraction		100	mg/kg	660	630	4.2	0% - 20%
		EP071: >C10 - C16 Fraction	>C10 C16	50	mg/kg	<50	<50	0.0	No Limit
			. 0.0_010					0.0	

Page	5 of 9
Work Order	: EN1303916 Amendment 1
Client	: ENVIRON
Project	AS130348

Sub-Matrix: SOIL						Laboratory I	Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EP080/071: Total Re	ecoverable Hydrocarbo	ns - NEPM 2013 (QC Lot: 3128345) - continued							
EN1303916-011	RES 3 - S5	EP071: >C34 - C40 Fraction		100	mg/kg	<100	<100	0.0	No Limit
		EP071: >C10 - C16 Fraction	>C10_C16	50	mg/kg	<50	<50	0.0	No Limit
EP080: BTEXN (QC	Lot: 3126366)								
EN1303916-001	RES 3 - S2	EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	0.0	No Limit
		EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: meta- & para-Xylene	108-38-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
			106-42-3						
	106-42-3	mg/kg	<0.5	<0.5	0.0	No Limit			
		EP080: Naphthalene	91-20-3	1	mg/kg	<1	<1	0.0	No Limit
EN1303916-011	RES 3 - S5	EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	0.0	No Limit
		EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: meta- & para-Xylene	108-38-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
			106-42-3						
		EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: Naphthalene	91-20-3	1	mg/kg	<1	<1	0.0	No Limit

Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: SOIL				Method Blank (MB)		Laboratory Control Spike (LC	S) Report	
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
K040S: Fluoride Soluble (QCLot: 3148949)								
EK040S: Fluoride	16984-48-8	1.0	mg/kg	<1	25.0 mg/kg	116	69	117
EK040S: Fluoride Soluble (QCLot: 3148950)								
EK040S: Fluoride	16984-48-8	1.0	mg/kg	<1	25.0 mg/kg	116	69	117
EP075(SIM)B: Polynuclear Aromatic Hydrocarbo	ons (QCLot: 3128346)							
P075(SIM): Naphthalene	91-20-3	0.5	mg/kg	<0.5	4 mg/kg	86.8	80	124
EP075(SIM): Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	4 mg/kg	92.5	77	123
P075(SIM): Acenaphthene	83-32-9	0.5	mg/kg	<0.5	4 mg/kg	95.5	79	123
EP075(SIM): Fluorene	86-73-7	0.5	mg/kg	<0.5	4 mg/kg	104	77	123
EP075(SIM): Phenanthrene	85-01-8	0.5	mg/kg	<0.5	4 mg/kg	88.5	79	123
EP075(SIM): Anthracene	120-12-7	0.5	mg/kg	<0.5	4 mg/kg	89.2	79	123
EP075(SIM): Fluoranthene	206-44-0	0.5	mg/kg	<0.5	4 mg/kg	90.0	79	123
EP075(SIM): Pyrene	129-00-0	0.5	mg/kg	<0.5	4 mg/kg	91.0	79	125
EP075(SIM): Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	4 mg/kg	96.5	73	121
EP075(SIM): Chrysene	218-01-9	0.5	mg/kg	<0.5	4 mg/kg	93.8	81	123
EP075(SIM): Benzo(b)fluoranthene	205-99-2	0.5	mg/kg	<0.5	4 mg/kg	94.5	70	118
P075(SIM): Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	4 mg/kg	101	77	123
EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	4 mg/kg	97.1	76	122
EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	4 mg/kg	83.8	71	113
EP075(SIM): Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	4 mg/kg	83.8	71.7	113
EP075(SIM): Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	4 mg/kg	85.0	72.4	114
P080/071: Total Petroleum Hydrocarbons (QCL	₋ot: 3126366)							
P080: C6 - C9 Fraction		10	mg/kg	<10	26 mg/kg	84.2	68.4	128
P080/071: Total Petroleum Hydrocarbons (QCL	_ot: 3128345)							
P071: C10 - C14 Fraction		50	mg/kg	<50	200 mg/kg	105	71	131
P071: C15 - C28 Fraction		100	mg/kg	<100	300 mg/kg	123	74	138
EP071: C29 - C36 Fraction		100	mg/kg	<100	200 mg/kg	105	64	128
EP080/071: Total Recoverable Hydrocarbons - N	EPM 2013 (QCLot: 3126366	5)						
P080: C6 - C10 Fraction	C6_C10	10	mg/kg	<10	31 mg/kg	81.3	68.4	128
P080/071: Total Recoverable Hydrocarbons - N	EPM 2013 (QCLot: 3128345	5)						
P071: >C10 - C16 Fraction	>C10_C16	50	mg/kg	<50	250 mg/kg	114	70	130
EP071: >C16 - C34 Fraction		100	mg/kg	<100	350 mg/kg	126	74	138
EP071: >C34 - C40 Fraction		100	mg/kg	<100				
		50	mg/kg		150 mg/kg	112	63	131
EP080: BTEXN (QCLot: 3126366)								

Page	: 7 of 9
Work Order	EN1303916 Amendment 1
Client	ENVIRON
Project	: AS130348

Sub-Matrix: SOIL				Method Blank (MB)	Laboratory Control Spike (LCS) Report				
				Report	Spike	Spike Recovery (%)	Recovery Limits (%)		
Method: Compound	CAS Number	LOR	Unit	Result	Concentration LCS		Low	High	
EP080: BTEXN (QCLot: 3126366) - continued									
EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	1 mg/kg	85.2	62	116	
EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	1 mg/kg	85.6	62	128	
EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	1 mg/kg	82.8	58	118	
EP080: meta- & para-Xylene	108-38-3	0.5	mg/kg	<0.5	2 mg/kg	84.2	60	120	
	106-42-3								
EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	1 mg/kg	83.9	60	120	
EP080: Naphthalene	91-20-3	1	mg/kg	<1	1 mg/kg	82.6	62	138	

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

ub-Matrix: SOIL				Matrix Spike (MS) Report				
				Spike	SpikeRecovery(%)	Recovery I	Limits (%)	
aboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High	
EK040S: Fluoride	Soluble (QCLot: 3148949)							
EN1303916-012	RES 3 - SF11	EK040S: Fluoride	16984-48-8	25.0 mg/kg	120	70	130	
EK040S: Fluoride	Soluble (QCLot: 3148950)							
EN1303916-032	RES 3 - SF31	EK040S: Fluoride	16984-48-8	25.0 mg/kg	124	70	130	
EP075(SIM)B: Pol	ynuclear Aromatic Hydrocarbons (QCL	ot: 3128346)						
EN1303916-001	RES 3 - S2	EP075(SIM): Acenaphthene	83-32-9	10 mg/kg	89.3	70	130	
		EP075(SIM): Pyrene	129-00-0	10 mg/kg	92.2	70	130	
EP080/071: Total I	Petroleum Hydrocarbons (QCLot: 3126	366)						
EN1303916-001	RES 3 - S2	EP080: C6 - C9 Fraction		32.5 mg/kg	99.4	70	130	
EP080/071: Total I	Petroleum Hydrocarbons (QCLot: 31283	345)						
EN1303916-001	RES 3 - S2	EP071: C10 - C14 Fraction		640 mg/kg	88.1	73	137	
		EP071: C15 - C28 Fraction		3140 mg/kg	81.5	53	131	
		EP071: C29 - C36 Fraction		2860 mg/kg	65.9	52	132	
EP080/071: Total I	Recoverable Hydrocarbons - NEPM 2013	3 (QCLot: 3126366)						
EN1303916-001	RES 3 - S2	EP080: C6 - C10 Fraction	C6_C10	37.5 mg/kg	94.7	70	130	
EP080/071: Total I	Recoverable Hydrocarbons - NEPM 2013	3 (QCLot: 3128345)						
EN1303916-001	RES 3 - S2	EP071: >C10 - C16 Fraction	>C10_C16	850 mg/kg	110	73	137	
		EP071: >C16 - C34 Fraction		4800 mg/kg	72.2	53	131	
		EP071: >C34 - C40 Fraction		2400 mg/kg	54.2	52	132	
EP080: BTEXN (C	CLot: 3126366)							
EN1303916-001	RES 3 - S2	EP080: Benzene	71-43-2	2.5 mg/kg	91.0	70	130	
		EP080: Toluene	108-88-3	2.5 mg/kg	96.2	70	130	

Sub-Matrix: SOIL				Matrix Spike (MS) Report						
				Spike SpikeRecovery(%) Reco			very Limits (%)			
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High			
EP080: BTEXN (QCLot: 3126366) - continued										
EN1303916-001 RES 3 - S2	EP080: Ethylbenzene	100-41-4	2.5 mg/kg	95.4	70	130				
		EP080: meta- & para-Xylene	108-38-3	2.5 mg/kg	95.0	70	130			
			106-42-3							
		EP080: ortho-Xylene	95-47-6	2.5 mg/kg	99.3	70	130			
		EP080: Naphthalene	91-20-3	2.5 mg/kg	85.5	70	130			

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

The quality control term Matrix Spike (MS) and Matrix Spike Duplicate (MSD) refers to intralaboratory split samples spiked with a representative set of target analytes. The purpose of these QC parameters are to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: SOIL					Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report						
				Spike	Spike Re	covery (%)	Recovery	Limits (%)	RP	Ds (%)	
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	MSD	Low	High	Value	Control Limi	
EP080/071: Total P	etroleum Hydrocarbons (Q	CLot: 3126366)									
EN1303916-001	RES 3 - S2	EP080: C6 - C9 Fraction		32.5 mg/kg	99.4		70	130			
EP080/071: Total R	ecoverable Hydrocarbons -	NEPM 2013 (QCLot: 3126366)									
EN1303916-001	RES 3 - S2	EP080: C6 - C10 Fraction	C6_C10	37.5 mg/kg	94.7		70	130			
EP080: BTEXN (Q	CLot: 3126366)										
EN1303916-001	RES 3 - S2	EP080: Benzene	71-43-2	2.5 mg/kg	91.0		70	130			
		EP080: Toluene	108-88-3	2.5 mg/kg	96.2		70	130			
		EP080: Ethylbenzene	100-41-4	2.5 mg/kg	95.4		70	130			
		EP080: meta- & para-Xylene	108-38-3	2.5 mg/kg	95.0		70	130			
			106-42-3								
		EP080: ortho-Xylene	95-47-6	2.5 mg/kg	99.3		70	130			
		EP080: Naphthalene	91-20-3	2.5 mg/kg	85.5		70	130			
EP080/071: Total P	etroleum Hydrocarbons (Q	CLot: 3128345)									
EN1303916-001	RES 3 - S2	EP071: C10 - C14 Fraction		640 mg/kg	88.1		73	137			
		EP071: C15 - C28 Fraction		3140 mg/kg	81.5		53	131			
		EP071: C29 - C36 Fraction		2860 mg/kg	65.9		52	132			
EP080/071: Total R	ecoverable Hydrocarbons -	NEPM 2013 (QCLot: 3128345)									
EN1303916-001	RES 3 - S2	EP071: >C10 - C16 Fraction	>C10_C16	850 mg/kg	110		73	137			
		EP071: >C16 - C34 Fraction		4800 mg/kg	72.2		53	131			
		EP071: >C34 - C40 Fraction		2400 mg/kg	54.2		52	132			
EP075(SIM)B: Poly	nuclear Aromatic Hydrocarl	oons (QCLot: 3128346)									
EN1303916-001	RES 3 - S2	EP075(SIM): Acenaphthene	83-32-9	10 mg/kg	89.3		70	130			
		EP075(SIM): Pyrene	129-00-0	10 mg/kg	92.2		70	130			
EK040S: Fluoride	Soluble (QCLot: 3148949)										
EN1303916-012	RES 3 - SF11	EK040S: Fluoride	16984-48-8	25.0 mg/kg	120		70	130			

Page	: 9 of 9
Work Order	: EN1303916 Amendment 1
Client	: ENVIRON
Project	: AS130348

Sub-Matrix: SOIL	Sub-Matrix: SOIL			Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report							
				Spike Spike Recovery (%) Recovery Limits (%) RPDs (%)			s (%)				
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	MSD	Low	High	Value	Control Limit	
EK040S: Fluoride S	EK040S: Fluoride Soluble (QCLot: 3148950)										
EN1303916-032	RES 3 - SF31	EK040S: Fluoride	16984-48-8	25.0 mg/kg	124		70	130			

	INTERPRET	IVE QUALITY CONTROL	REPORT
Work Order	: EN1303916	Page	: 1 of 8
Amendment	:1		
Client	ENVIRON	Laboratory	: Environmental Division Newcastle
Contact	: MR STEVE CADMAN	Contact	: Peter Keyte
Address	: PO Box 435	Address	5/585 Maitland Road Mayfield West NSW Australia 2304
	THE JUNCTION NSW 2291		
E-mail	: scadman@environcorp.com	E-mail	: peter.keyte@als.com.au
Telephone	:	Telephone	: 61-2-4968-9433
Facsimile	:	Facsimile	: +61-2-4968 0349
Project	: AS130348	QC Level	: NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Site	:		
C-O-C number	: 155061-64	Date Samples Received	: 24-OCT-2013
Sampler	: SC	Issue Date	: 19-FEB-2014
Order number	:		
		No. of samples received	: 42
Quote number	: SY/433/13	No. of samples analysed	: 42

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Interpretive Quality Control Report contains the following information:

- Analysis Holding Time Compliance
- Quality Control Parameter Frequency Compliance
- Brief Method Summaries
- Summary of Outliers

Address 5/585 Maitland Road Mayfield West NSW Australia 2304 PHONE +61 2 4014 2500 Facsimile +61 2 4968 0349 Environmental Division Newcastle ABN 84 009 936 029 Part of the ALS Group An ALS Limited Company

Environmental 🐊

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

Matrix: SOIL

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with recommended holding times (USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive <u>or</u> Vinyl Chloride and Styrene are not key analytes of interest/concern.

Evaluation: * = Holding time breach ; \checkmark = Within holding time.

Method		Sample Date	E	traction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA055: Moisture Content								
Pulp Bag (EA055-103)								
RES 3 - SF11,	RES 3 - SF12,	22-OCT-2013				08-NOV-2013	05-NOV-2013	x
RES 3 - SF13,	RES 3 - SF14,							
RES 3 - SF15,	RES 3 - SF16,							
RES 3 - SF17,	RES 3 - SF18,							
RES 3 - SF19,	RES 3 - SF20,							
RES 3 - SF21,	RES 3 - SF22,							
RES 3 - SF23,	RES 3 - SF24,							
RES 3 - SF25,	RES 3 - SF26,							
RES 3 - SF27,	RES 3 - SF28,							
RES 3 - SF29,	RES 3 - SF30,							
RES 3 - SF31,	RES 3 - SF32,							
RES 3 - SF33,	RES 3 - SF34,							
RES 3 - SF35,	RES 3 - SF36,							
RES 3 - SF37,	RES 3 - SF38,							
RES 3 - QA2,	RES 3 - QA3,							
RES 3 - QA4								
Soil Glass Jar - Unpreserved (EA055-103)								
RES 3 - S2,	RES 3 - S3,	22-OCT-2013				28-OCT-2013	05-NOV-2013	 ✓
RES 3 - QA1,	RES 3 - S4,							
RES 3 - S1,	RES 3 - S6,							
RES 3 - S7,	RES 3 - S9,							
RES 3 - S8,	RES 3 - S10,							
RES 3 - S5								
EA200: AS 4964 - 2004 Identification of Asbestos	s in bulk samples							
Soil Glass Jar - Unpreserved (EA200)								
RES 3 - S2,	RES 3 - S3,	22-OCT-2013		20-APR-2014		06-NOV-2013	05-MAY-2014	✓
RES 3 - QA1,	RES 3 - S4,							
RES 3 - S1,	RES 3 - S6,							
RES 3 - S7,	RES 3 - S9,							
RES 3 - S8,	RES 3 - S10,							
RES 3 - S5								

Page	: 3 of 8
Work Order	: EN1303916 Amendment 1
Client	: ENVIRON
Project	: AS130348

Matrix: SOIL					Evaluation	: × = Holding time	breach ; ✓ = Withir	n holding time
Method		Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EK040S: Fluoride Soluble								
Pulp Bag (EK040S)								
RES 3 - SF11,	RES 3 - SF12,	22-OCT-2013	11-NOV-2013	29-OCT-2013	<u>.</u>	11-NOV-2013	09-DEC-2013	✓
RES 3 - SF13,	RES 3 - SF14,							
RES 3 - SF15,	RES 3 - SF16,							
RES 3 - SF17,	RES 3 - SF18,							
RES 3 - SF19,	RES 3 - SF20,							
RES 3 - SF21,	RES 3 - SF22,							
RES 3 - SF23,	RES 3 - SF24,							
RES 3 - SF25,	RES 3 - SF26,							
RES 3 - SF27,	RES 3 - SF28,							
RES 3 - SF29,	RES 3 - SF30,							
RES 3 - SF31,	RES 3 - SF32,							
RES 3 - SF33,	RES 3 - SF34,							
RES 3 - SF35.	RES 3 - SF36.							
RES 3 - SF37,	RES 3 - SF38,							
RES 3 - QA2,	RES 3 - QA3,							
RES 3 - QA4								
EP080/071: Total Recoverable Hydrocarbo	ons - NEPM 2013					1		
Soil Glass Jar - Unpreserved (EP071) RES 3 - S2,	RES 3 - S3.	22-OCT-2013	29-OCT-2013	05-NOV-2013	1	30-OCT-2013	08-DEC-2013	1
RES 3 - 32, RES 3 - QA1,	RES 3 - 53, RES 3 - S4,	22-001-2013	23-001-2013	001101 2010	~	30-001-2013	00 02010	•
RES 3 - S1,	RES 3 - S6,							
RES 3 - S7,	RES 3 - S9,							
RES 3 - S8,	RES 3 - S10,							
RES 3 - S5								
EP075(SIM)B: Polynuclear Aromatic Hydro								
Soil Glass Jar - Unpreserved (EP075(SIM))				05 NOV 0040			00 050 0040	
RES 3 - S2,	RES 3 - S3,	22-OCT-2013	29-OCT-2013	05-NOV-2013	-	30-OCT-2013	08-DEC-2013	✓
RES 3 - QA1,	RES 3 - S4,							
RES 3 - S1,	RES 3 - S6,							
RES 3 - S7,	RES 3 - S9,							
RES 3 - S8,	RES 3 - S10,							
RES 3 - S5								
EP080: BTEXN								
Soil Glass Jar - Unpreserved (EP080)								
RES 3 - S2,	RES 3 - S3,	22-OCT-2013	28-OCT-2013	05-NOV-2013	1	29-OCT-2013	05-NOV-2013	✓
RES 3 - QA1,	RES 3 - S4,							
RES 3 - S1,	RES 3 - S6,							
RES 3 - S7,	RES 3 - S9,							
RES 3 - S8,	RES 3 - S10,							
RES 3 - S5								

Page	: 4 of 8
Work Order	: EN1303916 Amendment 1
Client	ENVIRON
Project	· AS130348

Matrix: SOIL					Evaluation:	× = Holding time	breach ; ✓ = Withir	n holding time.
Method		Sample Date	Ex	raction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EP080/071: Total Recoverable Hydro	EP080/071: Total Recoverable Hydrocarbons - NEPM 2013							
Soil Glass Jar - Unpreserved (EP080)								
RES 3 - S2,	RES 3 - S3,	22-OCT-2013	28-OCT-2013	05-NOV-2013	1	29-OCT-2013	05-NOV-2013	✓
RES 3 - QA1,	RES 3 - S4,							
RES 3 - S1,	RES 3 - S6,							
RES 3 - S7,	RES 3 - S9,							
RES 3 - S8,	RES 3 - S10,							
RES 3 - S5								

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(where) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: SOIL				Evaluation	: × = Quality Co	ntrol frequency r	not within specification ; \checkmark = Quality Control frequency within specification.
Quality Control Sample Type		Сс	ount		Rate (%)		Quality Control Specification
Analytical Methods	Method	OC	Reaular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP)							
Fluoride - Soluble	EK040S	4	31	12.9	10.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Moisture Content	EA055-103	8	80	10.0	10.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
PAH/Phenols (SIM)	EP075(SIM)	2	20	10.0	10.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
TPH - Semivolatile Fraction	EP071	2	20	10.0	10.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
TPH Volatiles/BTEX	EP080	2	15	13.3	10.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Laboratory Control Samples (LCS)							
Fluoride - Soluble	EK040S	2	31	6.5	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
PAH/Phenols (SIM)	EP075(SIM)	1	20	5.0	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
TPH - Semivolatile Fraction	EP071	1	20	5.0	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
TPH Volatiles/BTEX	EP080	1	15	6.7	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Method Blanks (MB)							
Fluoride - Soluble	EK040S	2	31	6.5	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
PAH/Phenols (SIM)	EP075(SIM)	1	20	5.0	5.0	~	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
TPH - Semivolatile Fraction	EP071	1	20	5.0	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
TPH Volatiles/BTEX	EP080	1	15	6.7	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Matrix Spikes (MS)							
Fluoride - Soluble	EK040S	2	31	6.5	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
PAH/Phenols (SIM)	EP075(SIM)	1	20	5.0	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
TPH - Semivolatile Fraction	EP071	1	20	5.0	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
TPH Volatiles/BTEX	EP080	1	15	6.7	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
Moisture Content	EA055-103	SOIL	A gravimetric procedure based on weight loss over a 12 hour drying period at 103-105 degrees C. This method
			is compliant with NEPM (2013) Schedule B(3) Section 7.1 and Table 1 (14 day holding time).
Asbestos Identification in bulk solids	EA200	SOIL	AS 4964 - 2004 Method for the qualitative identification of asbestos in bulk samples
Asbestos - Quantitative Analysis	* EA200Q	SOIL	Asbestos Materials Content with Confirmation of Identification by AS 4964 - 2004 Asbestos
Fluoride - Soluble	EK040S	SOIL	APHA 21st ed., 4500 FC Soluble Fluoride is determined after a 1:5 soil/water extract using an ion selective electrode.
TPH - Semivolatile Fraction	EP071	SOIL	(USEPA SW 846 - 8015A) Sample extracts are analysed by Capillary GC/FID and quantified against alkane standards over the range C10 - C36. This method is compliant with NEPM (2013) Schedule B(3) (Method 506.1)
PAH/Phenols (SIM)	EP075(SIM)	SOIL	(USEPA SW 846 - 8270B) Extracts are analysed by Capillary GC/MS in Selective Ion Mode (SIM) and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM (2013) Schedule B(3) (Method 502 and 507)
TPH Volatiles/BTEX	EP080	SOIL	(USEPA SW 846 - 8260B) Extracts are analysed by Purge and Trap, Capillary GC/MS. Quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM (2013) Schedule B(3) (Method 501)
Preparation Methods	Method	Matrix	Method Descriptions
1:5 solid / water leach for soluble	EN34	SOIL	10 g of soil is mixed with 50 mL of distilled water and tumbled end over end for 1 hour. Water soluble salts are
analytes			leached from the soil by the continuous suspension. Samples are settled and the water filtered off for analysis.
Methanolic Extraction of Soils for Purge	* ORG16	SOIL	(USEPA SW 846 - 5030A) 5g of solid is shaken with surrogate and 10mL methanol prior to analysis by Purge
and Trap			and Trap - GC/MS.
Tumbler Extraction of Solids (Option B -	ORG17B	SOIL	In-house, Mechanical agitation (tumbler). 10g of sample, Na2SO4 and surrogate are extracted with 20mL 1:1
Non-concentrating)			DCM/Acetone by end over end tumble. The solvent is transferred directly to a GC vial for analysis.

Summary of Outliers

Outliers : Quality Control Samples

The following report highlights outliers flagged in the Quality Control (QC) Report. Surrogate recovery limits are static and based on USEPA SW846 or ALS-QWI/EN/38 (in the absence of specific USEPA limits). This report displays QC Outliers (breaches) only.

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

- For all matrices, no Method Blank value outliers occur.
- For all matrices, no Duplicate outliers occur.
- For all matrices, no Laboratory Control outliers occur.
- For all matrices, no Matrix Spike outliers occur.

Regular Sample Surrogates

Sub-Matrix: SOIL

Compound Group Name	Laboratory Sample ID	Client Sample ID	Analyte	CAS Number	Data	Limits	Comment
Samples Submitted							
EP080S: TPH(V)/BTEX Surrogates	EN1303916-007	RES 3 - S7	Toluene-D8	2037-26-5	73.6 %	73.9-132.1	Recovery less than lower data quality
						%	objective
EP080S: TPH(V)/BTEX Surrogates	EN1303916-002	RES 3 - S3	Toluene-D8	2037-26-5	71.2 %	73.9-132.1	Recovery less than lower data quality
						%	objective
EP080S: TPH(V)/BTEX Surrogates	EN1303916-010	RES 3 - S10	Toluene-D8	2037-26-5	56.0 %	73.9-132.1	Recovery less than lower data quality
						%	objective

Outliers : Analysis Holding Time Compliance

This report displays Holding Time breaches only. Only the respective Extraction / Preparation and/or Analysis component is/are displayed.

Matrix: SOIL						
Method		Extraction / Preparation			Analysis	
Container / Client Sample ID(s)	Date extracted	Due for extraction	Days	Date analysed	Due for analysis	Days
			overdue			overdue
EA055: Moisture Content						

Page Work Order	8 of 8 EN1303916 Amendment 1
Client	ENVIRON
Project	: AS130348

Matrix: SOIL

Method		Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)		Date extracted	Due for extraction	Days overdue	Date analysed	Due for analysis	Days overdue
EA055: Moisture Content - Analysis Ho	olding Time Compliance						
Pulp Bag							
RES 3 - SF11,	RES 3 - SF12,				08-NOV-2013	05-NOV-2013	3
RES 3 - SF13,	RES 3 - SF14,						
RES 3 - SF15,	RES 3 - SF16,						
RES 3 - SF17,	RES 3 - SF18,						
RES 3 - SF19,	RES 3 - SF20,						
RES 3 - SF21,	RES 3 - SF22,						
RES 3 - SF23,	RES 3 - SF24,						
RES 3 - SF25,	RES 3 - SF26,						
RES 3 - SF27,	RES 3 - SF28,						
RES 3 - SF29,	RES 3 - SF30,						
RES 3 - SF31,	RES 3 - SF32,						
RES 3 - SF33,	RES 3 - SF34,						
RES 3 - SF35,	RES 3 - SF36,						
RES 3 - SF37,	RES 3 - SF38,						
RES 3 - QA2,	RES 3 - QA3,						
RES 3 - QA4							
EK040S: Fluoride Soluble							
Pulp Bag							
RES 3 - SF11,	RES 3 - SF12,	11-NOV-2013	29-OCT-2013	13			
RES 3 - SF13,	RES 3 - SF14,						
RES 3 - SF15,	RES 3 - SF16,						
RES 3 - SF17,	RES 3 - SF18,						
RES 3 - SF19,	RES 3 - SF20,						
RES 3 - SF21,	RES 3 - SF22,						
RES 3 - SF23,	RES 3 - SF24,						
RES 3 - SF25,	RES 3 - SF26,						
RES 3 - SF27,	RES 3 - SF28,						
RES 3 - SF29,	RES 3 - SF30,						
RES 3 - SF31,	RES 3 - SF32,						
RES 3 - SF33,	RES 3 - SF34,						
RES 3 - SF35,	RES 3 - SF36,						
RES 3 - SF37,	RES 3 - SF38,						
RES 3 - QA2,	RES 3 - QA3,						
RES 3 - QA4							

Outliers : Frequency of Quality Control Samples

The following report highlights breaches in the Frequency of Quality Control Samples.

• No Quality Control Sample Frequency Outliers exist.

Appendix F QA/QC Assessment

DATA QUALITY OBJECTIVES

To ensure that reliable data of adequate type was collected and assessed for the investigation, the seven-step Data Quality Objective (DQO) approach, endorsed in the NSW DEC (2006) Guidelines for the NSW Site Auditor Scheme 2nd Edition, will be adopted. The DQOs set quality assurance and quality control parameters for the field and laboratory programs to ensure data of appropriate reliability will be used to assess the environmental conditions at Parcel 3.

ENVIRON has developed DQOs in accordance with the seven-step process, which is presented below.

Step 1 – State the Problem

Based on the information available from the Phase 1 ESA, uses of Parcel 3 appear to be limited to farmland. This use of Parcel 3 requires confirmation via a site walkover. In addition, the potential for fluoride in surface soils from dust deposition from the Hydro smelter requires assessment.

Step 2 - Identification of the Goals (Decisions) of the Study

The following decisions are to be made from this study:

- Are the current and former uses of Parcel 3 consistent with site observations?
- Has Parcel 3 been impacted by fluoride from dust deposition from the Hydro smelter?
- Has Parcel 3 been impacted by other contaminants?
- Is Parcel 3 suitable for the purposes of low rural residential (R2), environmental conservation (E2) and public recreation (RE1) land use?

Step 3 – Identify Information Inputs to the Decision or Goal of the Study

The inputs required to make the above decisions as listed below:

- A site walkover, including collection of field notes and photographs;
- Results of surface soil samples collected for fluoride analysis;
- Results of other soil samples from fill/ hummocky ground collected for suitable analysis during the site walkover;
- Proposed land use;
- Appropriate NSW contamination guidelines.

Step 4 – Define the Study Boundaries

Spatial boundaries - the study boundaries have been defined as the spatial boundary of Parcel 3, as shown on Figure 1.

Vertical boundaries – as areas of concern at Parcel 3 are restricted to surface soils, the vertical boundary of the study is the top 200mm unless subsurface contamination issues are identified during the site walkover.

Temporal boundaries – the temporal boundary is limited to the data collected during the investigation works.

Constraints within the study boundaries – This investigation does not require investigation of subsurface soils or groundwater.

Step 5 – Develop a Decision Rule

The decision rules for this investigation are as follows:

- If it is determined that the data generated through this investigation is reliable for use in producing a site conceptual model and assessing the suitability of Parcel 3 for low rural residential (R2), environmental conservation (E2) and public recreation (RE1) landuse, then an assessment of the suitability of Parcel 3 for the purposes of low rural residential (R2), environmental conservation (E2) and public recreation (RE1) land use will be made;
- If it is determined that the data generated through this investigation is not suitable, comprehensive or reliable for use in producing a site conceptual model, then further investigations may be recommended prior to the development of a site conceptual model and assessment of the suitability of Parcel 3 for the purposes of low rural residential (R2), environmental conservation (E2) and public recreation (RE1) land use.

Step 6 – Specify Performance or Acceptance Criteria that the Data need to Achieve

Acceptable limits on decision errors have been developed based on the Data Quality Indicators (DQIs) of precision, accuracy, representativeness, comparability and completeness. The DQIs for this investigation are outlined below.

The potential for significant decision errors were minimized by:

- Completion of a QA/QC assessment of the investigation data to assess if the data satisfies the DQIs;
- Assessment of whether appropriate sampling and analytical densities were completed for the purpose of the investigation; and
- Ensuring that the criteria set for the investigation were appropriate for the proposed use of Parcel 3.

Minimization of the potential for significant decision errors limits the potential that a conclusive statement may be incorrect.

Step 7 – Optimisation of the Design of Collection of Data

The collection of data was optimized by the completion of a Phase 1 ESA, data gap review and development of a sampling design, which is included in Section 4.3. Attainment of the DQOs has been assessed by reference to the DQIs, presented below.

DATA QUALITY INDICATORS

The project Data Quality Indicators (DQIs) have been established to set acceptance limits on field and laboratory data collected as part of this investigation. Field and laboratory procedures acceptance limits are set at different levels for different projects and by different laboratories. Non-compliances with acceptance limits are to be documented and discussed in the report. The DQIs are presented in Table A.

DQI	Field	Laboratory	Acceptability Limits
	All critical locations sampled	All critical samples analysed and all	As per NEPM (2013)
	All samples collected	analytes analysed according to	
	Experienced sampler	Standard Operating Procedures	
S	Documentation correct	(SOPs)	
Jes		Appropriate Practical Quantitation	
Completeness		Limits (PQLs)	
ple		Sample documentation complete	
Lo Lo		Sample holding times complied	
0		with	
	Experienced sampler	Same analytical methods used	As per NEPM (2013)
>	In the event of multiple sampling	Same PQLs	
oilit	events:	Same units	
Irak	Same types of samples collected	Same primary and secondary	
Comparability	Same sampling methodologies	laboratories	
no	used		
0	Climatic conditions		
e e	Appropriate media sampled	All samples analysed according to	
res ivei	Relevant media sampled	SOPs	
Represe ntativene ss			
шсо			
	Collection of duplicate samples	Analysis of:	
_	Sampling methodologies	Blind duplicate samples at rate of 1	RPD of 30 to 50%
Precision	appropriate and complied with	in 10 samples	
cis		Split duplicate samples at rate of 1	RPD of 30 to 50%
Pre		in 20 samples	DDD of 20 to 50%
		Laboratory duplicate samples	RPD of 30 to 50%
	Sampling methodologies	Analysis of: Method blanks	Non-detect
	appropriate and complied with.		70 to 130%
		Matrix spikes	
acy		Surrogate spikes	70-130%
Accuracy		Laboratory control samples Reagent blanks	70 to 130%
~		reagent bianks	

QUALITY ASSURANCE AND QUALITY CONTROL

A quality assurance assessment for this report is presented in Table B and C, below. An assessment was made of data completeness, comparability, representativeness, precision and accuracy based on field and laboratory considerations, as outlined in NSW DEC (2006) and NSW EPA (2007) guidelines.

Table B: QA/QC – Sampling and Analysis Methodology Assessment					
Sampling Methodology	ENVIRON Assessment				
Sampling Pattern and Locations	Surface soil sampling was undertaken on a grid pattern across the entire site to assess the impact of particulate fallout from Hydro Aluminium Smelter.				
	Shallow soil samples were collected along the 300m alignment of the former rail line in northern area of Parcel 3.				
Sampling Density	38 soil samples were collected from a grid across the entire site which is approximately 139 ha. The purpose of the sampling was to assess for impacts from smelter particulate fallout and therefore is considered suitable in density and spatial layout. Fluoride soil sampling completed on a reduced density to identify if fluoride in surface soils is an issue.				
	10 soil samples were collected along the 300m alignment of the former rail line in northern area of Parcel 3. This was a targeted investigation and therefore the sampling density was considered appropriate to investigate impacts from former rail surface infrastructure.				
Sample depths	One soil sample was collected from each location, from the ground surface.				
Sample Collection Method	Surface soil samples across Parcel 3 were collected directly from the ground surface using using dedicated disposable gloves and a hand trowel. The hand trowel was brushed clean prior to sample collection. Soil samples were collected into laboratory supplied, acid rinsed glass jars.				
Decontamination Procedures	Surface soil samples across Parcel 3 were collected directly from the ground surface using using dedicated disposable gloves and a hand trowel. The hand trowel was brushed clean prior to sample collection.				
Sample handling and containers	All soil samples were placed into laboratory-supplied, acid- rinsed glass jars. Soil samples were placed on ice following collection and during transportation to the laboratory.				
Chain of Custody	Samples were transported to the laboratory under chain of custody conditions. The chain of custody forms were signed by the laboratory on receipt of the samples.				

Table B: QA/QC – Sampling and Analysis Methodology Assessment	
Sampling Methodology	ENVIRON Assessment
Detailed description of field screening protocols	Field screening for volatiles was not completed during soil sampling as volatile contaminants were not the main chemical of concern.
Calibration of field equipment	No field equipment requiring calibration was used in the field

Table B: QA/QC – Field and Lab Quality Assurance and Quality Control	
Field and Lab QA/QC	ENVIRON Comments
Field quality control samples	Intra-laboratory duplicate soil samples were analysed at a ratio of 1:9 for fluoride, TRH, BTEX and PAHs analysed for the rail spur samples.
	Intra-laboratory duplicate soil samples were analysed at a ratio of 1:9 for fluoride analysed for the grid samples across the entire site. No rinsate blank samples were collected.
Field quality control results	Intra- duplicate results are presented in Table C for soil.
	There were no RPD exceedences for the intra-laboratory duplicates collected for this assessment.
NATA registered laboratory and NATA endorsed methods	ALS was used as the primary laboratory. ALS laboratory certificates are NATA stamped and is accredited for the analyses performed for this assessment.
Analytical methods	A summary of analytical methods were included in the laboratory test certificates.
Holding times	Review of the COCs and laboratory certificates indicate that holding times were met.
Practical Quantitation Limits (PQLs)	PQLs for all soil analytes were below Parcel 3 assessment criteria.
Laboratory quality control samples	Laboratory quality control samples including duplicates, laboratory control samples, matrix spikes, surrogate spikes and blanks were undertaken by the laboratories at appropriate frequencies.
Laboratory quality control results	All results for laboratory soil duplicates, laboratory control samples, matrix spikes and surrogates were acceptable and no detections were made in blank samples.

Overall it is considered that the completed investigation works and the data obtained adequately complied with the requirements of NSW DEC (2006) and NSW EPA (2007) guidelines and that the data is of suitable quality to meet the project objectives.